

TESTING FOR THE VERIFICATION OF COMPLIANCE OF ENERGY STORAGE SYSTEM WITH : VDE-AR-N 4105:2018-11+ CORRECTION 1: 2020-10: GENERATORS CONNECTED TO THE LOW-VOLTAGE DISTRIBUTION NETWORK – TECHNICAL REQUIREMENTS FOR THE CONNECTION TO AND PARALLEL OPERATION WITH LOW-VOLTAGE DISTRIBUTION NETWORKS

Test Report Number:	SUEE240400004251		
Туре	Energy Storage System		
Trademark:	ANKER		
Tested Model	A17C1		
Variant Models	A17C3		
APPLICANT			
Name	Anker Innovations Limited		
Address	Room 1318-19, Hollywood Plaza, 610 Nathan Road, Mongkok, Kowloon, HongKong		
TESTING LABORATORY			
Name	SGS-CSTC Standards Technical Services Co., Ltd. Suzhou Branch		
Address	1/F., Building 12, Xinxing Industry Park, No.78, Xinglin Street, Suzhou Industrial Park, Suzhou, Jiangsu, China		
Conducted (tested) by:	Horace Hao (Project Engineer)		
Reviewed & Approved by:	Colin Chen (Technical Reviewer)		
Date of issue	2024/04/09		
Number of pages	93		
Supplementary Report and pages	SUEE240400004251 Attachment Report including 9 pages		
Total Number of pages	102		

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Member of the SGS Group (SGS SA)

TRF No. EEC_ VDE-AR-N 4105

Important Note:

- This document is issued by the Company under its General Conditions of service accessible at http://www.sgs.com/terms and conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.
- This document cannot be reproduced except in full, without prior approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.
- Unless otherwise stated the results shown in this test report refer only to the sample(s) tested as received. Information of derived or extension models of the range as provided by the applicant, (if any), is included in this report only for informative purposes. The Company SGS shall not be liable for any incorrect results arising from unclear, erroneous, incomplete, misleading or false information provided by Client.

Data Provided By The Client:

The following data has been provided by the applicant:

- 1. Any information regarding technical characteristics of the equipment (ratings, operation modes, software and hardware versions, dimensions and weight).
- 2. Equipment operation & construction information (manuals, electrical diagrams, information about components, operation procedures).
- 3. Documental information (brand and models names, address or other information about applicant, company or manufacturer).
- 4. Other information remarked within this report.

SGS-CSTC Standards Technical Services Co., Ltd. Suzhou Branch declines any responsibility with respect to the information provided by the applicant and that may affect the validity of results. It is not covered by A2LA accreditation.

Test Report Historical Revision:

Test Report Version	Date	Resume
SUEE240400004251	2024/04/09	First issuance

INDEX

1	SCOPE		4
2			
-	2.1	Testing Period and Climatic conditions	
	2.2	Equipment under Testing	5
	2.2.1	Reference Values	9
	2.3	Manufacturer and Factory Information	9
	2.4	Test Equipment List	10
	2.5	Measurement Uncertainty	11
	2.6	Test set up of the different standard	12
	2.7	Definitions	15
3	RESUME OF	F TEST RESULTS	16
4	TEST RESU	ILTS	18
	4.1	System perturbations	18
	4.1.1	Rapid voltage changes	18
	4.1.2	Flickers	19
	4.1.3	Harmonics and interharmonics	22
	4.1.3.1	Harmonics	22
	4.1.3.2	Interharmonics	24
	4.1.3.3	Higher Frequency	24
	4.1.4	Commutation notches	25
	4.1.5	DC current injection	27
	4.2	Three-phase inverter systems	28
	4.2.1	Calculation of asymmetry of three-phase converters	
	4.2.2	Symmetrical operation with a symmetry device	
	4.3	Normal frequency operating range	
	4.4	RoCoF	
	4.5	Reactive power supply	
	4.5.1	Reactive power supply at 2S _{Emax}	
	4.5.2	Reactive power supply smaller than PEmax	
	4.6	Reactive power control.	
	4.6.1	Reactive power voltage characteristic Q(U)	
	4.6.2	Displacement factor/active power characteristic curve $\cos\varphi(P)$	
	4.0.3 4 7	rixeu uispiacement iacior cosψ(r)	51 E1
	4.1 1 8	Active power output	ا C
	τ.υ / Q 1	Active power gradient	ו כ ביו
	4.0.1	Ceasing of active power by external signal on input port	ו ט בא
	483	Active nower steps	50. ۶۸
	484	Active power adjustment at a function of grid frequency	
	4841	Over-frequency	
	4842	Under-frequency	
	4.8.5	Voltage-dependent active power reduction	
	4.9	Short-circuit contribution	
	4.10	Protection setting	
	4.11	Islanding detection	
	4.12	Connection conditions and synchronization	80
5	PICTURES		83
6	ELECTRICA	L SCHEME	
7	CE DECL	ARATION	

1 SCOPE

SGS-CSTC Standards Technical Services Co., Ltd. Suzhou Branch has been contracted by Anker Innovations Limited, in order to perform the testing according to:

- VDE-AR-N 4105:2018-11:" Generators connected to the low-voltage distribution network - Technical requirements for the connection to and parallel operation with low-voltage distribution networks" and including "Correction 1:2020-10".

As Test procedure, the following Standard has been used for some of the applicable tests of the Standard above:

- VDE V 0124-100:2020-06: Grid integration of generator plants Low-voltage – Test requirements for generation units, intended for connection and parallel operation on the low-voltage grid.

2 GENERAL INFORMATION

2.1 Testing Period and Climatic conditions

The necessary testing has been performed between the 28th of February of 2024 and the 03rd of April of 2024.

All the tests and checks have been performed at climatic conditions:

Cooling group Natural Cooling

Modular No Internal Transformer Yes

Temperature	25 ± 5 ⁰C
Relative Humidity	50 ± 10 %
Pressure	96 ± 10 kPa

2.2 Equipment under Testing

Apparatus type:	Energy Storage System
Installation:	Fixed installation
Manufacturer	Anker Innovations Limited
Trademark:	ANKER
Model / Type reference:	A17C1
Serial Number:	APCGQ80E13200076
Software Version:	v.3.1.0
Rated Characteristics:	PV input: 16-60 V, Max. 4× 16 A Battery rated voltage: 16V, Max.: 75A AC output: L/N/PE 230 V, 50 Hz, 3.5 A, 800 W
Date of manufacturing: 2023	
Input Output	Battery and PV AC, L/N/PE
Class of protection against electric shock	Class I
Degree of protection against moisture	: IP 65
Type of connection to the main supply	Single phase – Fixed installation

Ankor SOLIX Solarbank 2 E	1400 Pro
Anker SOLIX Balcony Energy Storage	System Model: A17
PV terminal	On-orid terminal
Max PV input voltage: 6	0Vd.c. AC output power: 800'
Max PV input current: 16Ad c (per c	hanel) AC rated output: 220/230/240Va.c. 50/60F
Max. Isc. PV 2	0Ad c. Max. AC output current: 3 5Aa.c. 230Va
Aax MPPT input power: 2	400W Power factor: 1(-0.8~+0.
Deration voltage range: 16-6	0Vd.c. Battery terminal
	Battery rated voltage: 16Vd.
General parameters	Max. charge current: 75Ad.
Ingress Protection: Cl	ass I Max. discharge current: 75Ad.
Operation temperature range: -20°C~	+55°C Rated power: 1000
Enclosure:	IP 65 Back-up terminal
solated method(solar): Isolated Transf	ormer Max. AC output power: 1000
olated method(battery):	HF Max. AC apparent power: 1000V
	AC output: 4.4Aa.c.(max), 230Va.c., 50/60F
he has been used as a literatural	Power Factor: 1 (-0.8 ~ +0.
Anker Innovations Limited	Nathan Boad, Mangkak, Kawleon, Hang Kang
Anker Innovations Deutschland Gmb Made in China	H Georg-Muche-Strasse 3, 80807 Munich, Germar
	FR
	Cet appareil, A DEPOSER A DEPOSER EN MAGASIN EN DÉCHÈTERI
	ses accessoires, piles et cordons
	se recyclent
	Points de collecte sur www.quefairedemesdechets.fr
ALWAYS HERE TO HELP	(Anker SOLIX): +49 (800) 000 2522 LISA: +1 (800) 988-7973
Mo	n-Fri 9:00 Uhr bis 17:00 Uhr Mon-Fri 7:00 am to 5:00 pm (PT)

Note:

- 1. The above markings are the minimum requirements required by the safety standard. For the final production samples, the additional markings which do not give rise to misunderstanding may be added.
- 2. Label is attached on the side surface of enclosure and visible after installation.
- 3. Labels of other models are as the same with A17C1's except for the parameters of rating.

Equipment Under Testing:

· A17C1

Variant models:

A17C3

The variant models have been included in this test report without tests because the following features don't change regarding to the tested model:

- Same connection system and hardware topology.
- Same control algorithm.
- Output power within $1/\sqrt{10}$ and 2 times of the rated output power of the EUT or Modular inverters.
- Same Firmware Version.

The models A17C1 and A17C3 have the same topology schematic and control solution code, except for the Back-UP circuit. The A17C3 model does not have a backup circuit and reduces 2 MPPTs, everything else is exactly the same.

The results obtained apply only to the particular sample tested that is the subject of the present test report.

The most unfavorable result values of the verifications and tests performed are contained herein.

Throughout this report a point (comma) is used as the decimal separator.

Following table shows the full ratings of all the models referenced in this report, marked in **bold letters** is the one subjected to testing:

Model	A17C1 A17C3				
PV Input					
Max. input voltage 60 Vdc					
MPPT operating voltage range	16-60	Vdc			
Max. input current	16 *4 A	16 *2 A			
Battery Input					
Battery rated voltage	16 \	/ dc			
Battery Max. charge & discharge current	75	Α			
Battery rated power	100	OW			
AC Output					
Nominal grid voltage	L/N/PE,	230 Vac			
Nominal grid frequency	50 Hz				
Rated AC power	800 W				
Max. AC apparent power	800 VA				
Max. AC current	3.5 A				
Output power factor	1 default (adjustable+/-0.8)				
AC Output (Back-up)					
Nominal grid voltage	L/N/PE, 230 Vac	/			
Nominal grid frequency	50Hz	/			
Rated AC power	1000W	/			
Max. AC apparent power	1000VA	/			
Max. AC current	4.4 A /				
Output power factor	1 default (adjustable+/-0.8) /				
General Data					
Operating temperature range	-20 °C ~ +55 °C				
Protection degree	IP65				
Protective class	Class I				
Cooling method	Natural	Cooling			
Topology	Isolated				

2.3 Reference Values

The values presented in the following table have been used for calculation of referenced values (p.u.; %) through the report.

Reference Values				
Rated power, Pn (P _{rE}) in kW	0.8			
Rated apparent power, Sn (S _{rE}) in kVA	0.8			
Max. power, Pmax (P _{Amax} P _{Emax}) in kW	0.8			
Max. apparent power, Smax (S _{Amax} S _{Emax}) in kVA	0.8			
Rated wind speed (only WT), vn in m/s	Not applicable			
Rated current (determined), In in A	3.5			
Rated output voltage, (phase to neutral) Un in Vac	230			
Note: In this report p.u. values are calculated as follows:				
-For Active & Reactive Power p.u values are reference to Pn				
-For Currents p.u values, the reference is always In				
-For Voltages p.u values, the reference is always Un=230V _{L-N}				
Note: Rated current is calculated as, In=800/230=3.5 A				

2.4 Manufacturer and Factory Information

Manufacturer Name:

Name	Anker Innovations Limited Room 1318-19, Hollywood Plaza, 610 Nathan Road, Mongkok, Kowloon, HongKong
Factory Name:	
Name:	Huizhou Blueway Electronics Co.Ltd.
Address	No. 101, West Hechang 5th Road, Zhongkai High- Tech Development Zone, Huizhou, Guangdong, P.R.China

2.5 Test Equipment List

From	No.	Equipment Name	Trademark / Model No.	Equipment No.	Calibration Period
	1	Power analyzer	ZLG/PA6004H- P0004-2159	SUZE600303	2023/11/05 to 2024/11/04
	2	Digital Oscilloscope	Tektronix / MSO46 4-BW-500	ATC550903	2023/07/13 to 2024/07/12
	3	Oscilloscope probe	Tektronix/C188090	ATC550904	2023/08/08 to 2024/08/07
	4	Current probe	HIOKI/CT6873	SUZE600807	2023/09/08 to 2024/09/07
SGS	5	Current probe	HIOKI/CT6873	SUZE600808	2023/09/08 to 2024/09/07
	6	Voltage probe	CYBERTEK/ CP1000A	SUZE600801	2023/09/08 to 2024/09/07
	7	Voltage probe	CYBERTEK/ CP1000A	SUZE600802	2023/09/08 to 2024/09/07
	8	Temperature & Humidity meter	Testo/175-H1	SUZE601701	2023/05/09 to 2024/05/08
	9	Power analyzer	DEWTRON/ TRIONet	SUZE600302	2023/08/10 to 2024/08/09

Note: All measurement equipment was used inside their corresponding calibration period. Copy of all calibration certificates are available at the laboratory for reference.

2.6 Measurement Uncertainty

Associated uncertainties through measurements showed in this this report are the maximum allowable uncertainties.

Magnitude	Uncertainty		
Voltage measurement	±1.5 %		
Current measurement	±2.0 %		
Frequency measurement	±0.2 %		
Time measurement	±0.2 %		
Power measurement	±2.5 %		
Phase Angle	±1°		
Cosφ	±0.01		
Note1: Measurement uncertainties showed in this table are maximum allowable uncertainties. The			

measurement uncertainties associated with other parameters measured during the tests are in the laboratory at disposal of the petitioner.

Note2: Where the standard requires lower uncertainties that those in this table. Most restrictive uncertainty has been considered.

2.7 Test set up of the different standard

Below is the simplified construction of the test set up.

Different equipment has been used to take measures as it shows in chapter 2.5. Current and voltage clamps have been connected to the inverter input / output for all the tests.

All the tests described in the following pages have used this specified test setup.

EQUIPMENT	TRADEMARK / MODEL	RATED CHARACTERISTICS	OWNER / SN.
AC source	WAGO / WLPA- 330150kVA-D-W	150 kVA max. 45-65 Hz	SUZE600101
DC source	EA/PSI 11500-60	1500 V, 60 A max.	SUZE600201
RLC load	KAIXIANG / AC400V- 450.99kVA-RLC	450 kW, 450 kVAR	SUZE660101

The test bench used includes:

Test Conditions							
Condition	Value	Comments					
Point of measurement	EUT Output (Low Voltage)	Equipment enounced in section 2.5 of this report has been used in the point of measurement					
Short circuit ratio at the measurement point (S _k /Sn)	S _k /Sn =150kVA / 0.8kVA = 187.5						
If the PGU is connected directly to the medium-voltage grid and a step-up transformer is installed between the PGU and the grid (which is not part of the PGU), a standard transformer must be used, the rated apparent power of which corresponds at least to the rated apparent power of the PGU being evaluated.	Connect to LV grid only						
MV Tansformer: Short circuit Power		Not applicable measured in Low voltage side					
MV Tansformer: Network impedance Phase Angle		Not applicable measured in Low voltage side					
MV Transformer : Service voltage Uc		Not applicable measured in Low voltage side					
LV Isolation transformer : Nominal Power (kVA)		Transformer					
LV Isolation transformer : Short circuit voltage Uk (%)		Transformer					
LV Isolation transformer : Tap possition		Transformer					
MV Side: Additional impedance		Not applicable measured in Low voltage side					
LV Side: Additional impedance	Active 0.24 Ω Reactive 0.16 Ω						
The THDSU of the voltage which includes all integer harmonics up to the 50th order must be smaller than 5%. It is measured as the 10-minute mean at the PGU terminals while the PGU is not generating any power.	See section 4.1.3.1 of this report						
The voltage, measured as a 10- minute mean at the PGU terminals, must lie within a range of $\pm 10\%$ of the rated voltage	0.20%						
The voltage unbalance, measured as a 10-minute mean at the PGU terminals, must be less than 2%.		Single-phase					

Test Conditions							
Condition	Value	Comments					
The grid frequency, measured as a 0.2 second mean, must lie within a range of $\pm 1\%$ of the rated frequency around the rated frequency. The rate of change of the grid fre-quency, measured as a 0.2 second mean, must be smaller than 0.2% of the rated fre-quency per 0.2 seconds.	Tested Max. Value 49.997Hz Tested Min. Value 49.990Hz Tested Avg. Value:49.994Hz						
Note 1: These test conditions have Note 2: See also the test bench inf	been used in all the test perform formation table in this section	ned in Sections 4 of this report.					

2.8 Definitions

In	Nominal Current	Р	Power				
p.u	Per unit	I	Current				
Pn	Nominal Power	Μ	Change for real power				
Sn	Apparent Power	Ν	Change for reactive power				
PGU	Power Generation Unit	F	Frequency				
Pst	Short-term flicker strength	Qf	Quality factor				
Plt	Long-term flicker strength	NS	Network and System				
$C_{\psi K}$	Flicker coefficient for continuous operation	Un	Nominal Voltage				
Sr	Apparent Power Rated	PWHD	Partial weight harmonic distortion				
Sk	Short-circuit Apparent Power	THD	Total harmonic distortion				
K _{imax}	Maximum switching current factor	Ztest	Test circuit impedance at which the				
			emission test				
Zref	The reference impedance	EUT	Equipment under test				
P _{rE}	rated active power	S_{rE}	rated apparent power				
SAmax	maximum apparent power of a power	S _{Emax}	maximum apparent power of a				
	generation system		power generation unit				
P _{Amax}	maximum active power of the power	P _{Emax}	maximum active power of the				
	generation system		power generation unit				
Pmom	instantaneous active power	Pav, e	agreed active power of a				
			connection for feed-in				

3 RESUME OF TEST RESULTS

INTERPRETATION KEYS

Test object does meet the requirement	Р	Pass
Test object does not meet the requirement	F	Fails
Test case does not apply to the test object	N/A	Not applicable
To make a reference to a table or an annex	See ad	ditional sheet
To indicate that the test has not been performed:	N/P	Not performed

TEST	VDE V	STANDARD REQUIREMENTS				
REPORT	0124-		VDE-AR-N 4105:2018-11			
SECTION	100:2020-06 CLAUSE	CLAUSE	TEST	NLOOL!		
4.1	5.2	5.4	Network connection	-		
4.1.1	5.2.2		Rapid Voltage Changes	Р		
4.1.2	5.2.3		Flickers	Р		
4.1.3	5.2.4		Harmonics and interharmonics	P		
4.1.4	5.2.5		Commutation notches	P		
4.1.5	5.2.6		Direct current feed	Р		
4.2	5.3	5.6	Verification of the symmetry behaviour of converters	N/A		
4.2.1	5.3.2		Calculation of asymmetry of three-phase converters	N/A		
4.2.2	5.3.3		Symmetrical operation with a symmetry device	N/A		
	5.4	5.7	Behaviour of the power generation system at the network	N/A		
4.3		5.7.1	General (Normal frequency operating range)	Р		
4.4		5.7.1	General (RoCoF)	Р		
4.5.1	5.4.8.2	5.7.2.2	Reactive power supply at ΣS_{Emax}	Р		
4.5.2		5.7.2.3	Reactive power supply smaller than P _{Emax}	Р		
4.6.1	5.4.8.4	5.7.2.4 a) / 5.7.2.5	Reactive power voltage characteristic curve Q(U) / Requirements for reactive power methods of type 2 systems (inverters only) and type 1 systems	N/A		
4.6.2	5.4.8.3	5.7.2.4 b) / 5.7.2.5	Displacement factor/active power characteristic curve cos ϕ (P) / Requirements for reactive power methods of type 2 systems (inverters only) and type 1 systems	Р		
4.6.3		5.7.2.4 c) / 5.7.2.5	Displacement factor $\cos \phi$ / Requirements for reactive power methods of type 2 systems (inverters only) and type 1 systems	Р		
4.7	5.8	5.7.3	Dynamic network stability	N/A		
4.8.1	5.4.3.4	5.7.4.1	Active power output – General (P gradient)	Р		
4.8.2		5.7.4.1	Active power output – General (Ceasing of P)	Р		
4.8.3	5.4.3.3	5.7.4.2.2	Active power steps	Р		
4.8.4.1	5.4.5	5.7.4.2.3	Active power adjustment as a function of grid frequency (Overfrequency, storage)	Р		
4.8.4.2	5.4.7	5.7.4.2.3	Active power adjustment as a function of grid frequency (Underfrequency, storage)	Р		
Continue o	n the next page	e				

4.8.5		5.7.4.4	Voltage-dependent active power reduction	N/A
4.9		5.7.5	Short circuit contribution	Р
	5.5	6.5	Protection devices and protection settings	Р
4.10	5.5.7	6.5.2	Protective functions	Р
4.11	5.5.10	6.5.3	Islanding detection	Р
4.12	5.6	8.3	Connection conditions and synchronisation	Р

Note:

Decision Rule of Statements of conformity evaluated according to Guidelines ILAC G8:09/2019 and IEC 115:2023 (4.3.3 / 4.4) & ISO/IEC Guide 98-4 (8.3.12).

Decision Rules used: Binary Statement for Simple Acceptance (Guard Band with respect to the limit w=0). **Specific Risk:** Probability of False Accept or Reject lower than 50 %, (PFA / PFR < 50 %)

Measurement uncertainty is not applied when statements of conformity is the simple acceptance. For more information see ILAC G8/09 & 115 Guidelines.

4 TEST RESULTS

4.1 SYSTEM PERTURBATIONS

System perturbations have been measured with tests procedures from chapter 5.2 of the VDE V 0124-100:2020-06 standard to verify requirements specified in form E.5 of VDE AR-N 4105:2018-11.

4.1.1 Rapid voltage changes

The point 5.2.2 of VDE V 0124-100:2020-06 refers to the standard DIN EN 61000-3-3 for the verification of the rapid voltage changes in equipment with a nominal current \leq 16 A.

Test results offered have a reference grid impedance Z_{ref} of **32**°.

		d _c (%)	d _{max} (%)	T _{max} (ms)
Limits	s set under DIN EN 61000-3-11	3.3	4.0	500
100% Pn	Measured values at test impedance	0.000	0.000	0
66% Pn	Measured values at test impedance	0.000	0.000	0
33% Pn	Measured values at test impedance	0.000	0.000	0

Graphics of the results are same with the flickers, refer to the section paragraph 4.1.2 of this report.

4.1.2 Flickers

The Flickers test has been performed according to the paragraph 5.4.3 of VDE-AR-N 4105:2018-11 and the paragraph 5.2.3 of VDE V 0124-100:2020-06. It has been taken the EN 61000-3-3 as reference standard due to the output current \leq 16 A of the inverter. In addition of the requirements of this reference standard, VDE-AR-N 4105: 2011 requires a Plt value less or equal to 0.5.

	Limit	33% Pn	66% Pn	100% Pn						
Pst	≤ 1	0.017	0.030	0.030						
Plt	≤ 0.5	0.013	0.029	0.029						
dc [%]	≤ 3.30	0.000	0.000	0.000						
dmax [%]	4	0.000	0.000	0.000						

In table below are offered the values measured:

As it can be seen in the next screenshots, this test has 12 steps and each step for 10min. The values took of Pst, Plt, dc and dmax are the most unfavorable of the 12 steps.

According to the standard, the flicker coefficient $c\Psi k$ must be determined for the impedance angle 32°.

The flicker coefficient is determined on the basis of the previously measured P_{st} values in accordance with the following formula:

 $c_{\Psi k} = P_{st} \times (S_k/S_n).$

Whereby the following applies:

- Pst Short-term flicker value measured on the network substitute element;
- $S_{\rm K}$ Short circuit power of the network substitute element (during determination of the corresponding $P_{\rm st}$ values).

Checking the datasheet of the AC source (KEWELL / KACM-75-33):

Sk,fic =150 kVA, and Pn=0.8 kW

Which leads us to the following relation:

 $S_k/Sn = 187.5$

These tests are only based on a 32° network impedance angle.

Z_{test} impedance test (Test method refer to IEC 61000-3-11):

 $R_A = 0.24$ W; $X_A = j 0.15$ W at 50 Hz; $R_N = 0.16$ W; $X_N = j 0.10$ W at 50 Hz.

The impedance test Z_{test} is the same that the reference impedance Z_{ref}.

It has also been calculated the flicker coefficient in function of different network impedance phase angles. These calculations are offered in the table below.

Network impedance phase angle, Ψk	32°
Average active power	Flicker coefficient, C (Ψk, P)
P = 33%Pn	3.19
P = 66% Pn	5.63
P = 100% Pn	5.63

		Power=33% Pn						
Time (-)	1/Pst_L1 ()	1/Plt_L1 ()	Du_max_L1 (%)	Du_dc_L1 (%)	1/Du_duration_L1 (s)			
2024/2/28 19:03	0.017		0	0	0			
2024/2/28 19:13	0.013		0	0	0			
2024/2/28 19:23	0.013		0	0	0			
2024/2/28 19:33	0.013		0	0	0			
2024/2/28 19:43	0.013		0	0	0			
2024/2/28 19:53	0.013		0	0	0			
2024/2/28 20:03	0.013		0	0	0			
2024/2/28 20:13	0.013		0	0	0			
2024/2/28 20:23	0.013		0	0	0			
2024/2/28 20:33	0.013		0	0	0			
2024/2/28 20:43	0.013	0.010	0	0	0			
2024/2/28 20:53	0.010	0.013	0	0	0			
	0.013		0	0	0			
2024/2/28 20:53								
2024/2/28 20:53		Pc	ower=66% Pn					
2024/2/28 20:53		Pc	ower=66% Pn					
2024/2/28 20:53		Pc	ower=66% Pn	_				
2024/2/28 20:53		Pc	ower=66% Pn					
2024/2/28 20:53		Pc	ower=66% Pn					
2024/2/28 20:53	1/Pst_L1 ()	Pc 1/Plt_L1 ()	ower=66% Pn Du_max_L1 (%)	Du_dc_L1 (%)	1/Du_duration_L1 (s)			
Time (-) 2024/2/28 10:58	1/Pst_L1 () 0.029	Pc 1/Plt_L1 ()	Dwer=66% Pn	Du_dc_L1 (%) 0	1/Du_duration_L1 (s) 0			
Time (-) 2024/2/28 10:58 2024/2/28 11:08	1/Pst_L1 () 0.029 0.029	Pc 1/Plt_L1 ()	Dwer=66% Pn	Du_dc_L1 (%) 0 0	1/Du_duration_L1 (s) 0 0			
Time (-) 2024/2/28 20:53 2024/2/28 10:58 2024/2/28 11:08 2024/2/28 11:18	1/Pst_L1 () 0.029 0.029 0.029	Pc 1/Plt_L1 ()	Dwer=66% Pn	Du_dc_L1 (%) 0 0 0	1/Du_duration_L1 (s) 0 0 0			
Time (-) 2024/2/28 20:53 2024/2/28 10:58 2024/2/28 11:08 2024/2/28 11:18 2024/2/28 11:28	1/Pst_L1 () 0.029 0.029 0.029 0.029	Pc 1/Plt_L1 ()	Du_max_L1 (%) 0 0 0 0	Du_dc_L1 (%) 0 0 0 0	1/Du_duration_L1 (s) 0 0 0 0			
Time (-) 2024/2/28 20:53 2024/2/28 10:58 2024/2/28 11:08 2024/2/28 11:18 2024/2/28 11:28 2024/2/28 11:38	1/Pst_L1 () 0.029 0.029 0.029 0.029 0.029 0.029	Pc	Du_max_L1 (%) 0 0 0 0 0	Du_dc_L1 (%) 0 0 0 0	1/Du_duration_L1 (s) 0 0 0 0 0			
Time (-) 2024/2/28 20:53 2024/2/28 10:58 2024/2/28 11:08 2024/2/28 11:18 2024/2/28 11:28 2024/2/28 11:38 2024/2/28 11:48	1/Pst_L1 () 0.029 0.029 0.029 0.029 0.029 0.029 0.029	Pc	Du_max_L1 (%) 0 0 0 0 0 0 0 0	Du_dc_L1 (%) 0 0 0 0 0 0	1/Du_duration_L1 (s) 0 0 0 0 0 0 0			
Time (-) 2024/2/28 20:53 2024/2/28 10:58 2024/2/28 11:08 2024/2/28 11:18 2024/2/28 11:28 2024/2/28 11:38 2024/2/28 11:48 2024/2/28 11:58	1/Pst_L1 () 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029	Pc	Du_max_L1 (%) 0 0 0 0 0 0 0 0 0 0 0	Du_dc_L1 (%) 0 0 0 0 0 0 0	1/Du_duration_L1 (s) 0 0 0 0 0 0 0 0 0 0			
Time (-) 2024/2/28 20:53 2024/2/28 10:58 2024/2/28 11:08 2024/2/28 11:18 2024/2/28 11:28 2024/2/28 11:38 2024/2/28 11:38 2024/2/28 11:58 2024/2/28 12:08	1/Pst_L1 () 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029	Pc	Du_max_L1 (%) Du_max_L1 (%) 0 0 0 0 0 0 0 0 0 0 0 0 0	Du_dc_L1 (%) 0 0 0 0 0 0 0 0 0	1/Du_duration_L1 (s) 0 0 0 0 0 0 0 0 0 0 0 0 0			
Time (-) 2024/2/28 20:53 2024/2/28 10:58 2024/2/28 11:08 2024/2/28 11:18 2024/2/28 11:28 2024/2/28 11:28 2024/2/28 11:38 2024/2/28 11:58 2024/2/28 12:08 2024/2/28 12:18	1/Pst_L1 () 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.030	Pc	Du_max_L1 (%) Du_max_L1 (%) 0 0 0 0 0 0 0 0 0 0 0 0 0	Du_dc_L1 (%) 0 0 0 0 0 0 0 0 0 0 0	1/Du_duration_L1 (s) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Time (-) 2024/2/28 20:53 2024/2/28 10:58 2024/2/28 11:08 2024/2/28 11:18 2024/2/28 11:28 2024/2/28 11:28 2024/2/28 11:38 2024/2/28 11:58 2024/2/28 12:08 2024/2/28 12:18 2024/2/28 12:28	1/Pst_L1 () 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.030 0.030	Pc	Du_max_L1 (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Du_dc_L1 (%) 0 0 0 0 0 0 0 0 0 0 0 0	1/Du_duration_L1 (s) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Time (-) 2024/2/28 20:53 2024/2/28 10:58 2024/2/28 11:08 2024/2/28 11:18 2024/2/28 11:28 2024/2/28 11:28 2024/2/28 11:38 2024/2/28 11:58 2024/2/28 12:08 2024/2/28 12:18 2024/2/28 12:28 2024/2/28 12:38	1/Pst_L1 () 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.030 0.030 0.030	Pc	Du_max_L1 (%) Du_max_L1 (%) 0 0 0 0 0 0 0 0 0 0 0 0 0	Du_dc_L1 (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1/Du_duration_L1 (s) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Time (-) 2024/2/28 20:53 2024/2/28 10:58 2024/2/28 11:08 2024/2/28 11:18 2024/2/28 11:28 2024/2/28 11:28 2024/2/28 11:38 2024/2/28 11:58 2024/2/28 12:08 2024/2/28 12:18 2024/2/28 12:28 2024/2/28 12:38 2024/2/28 12:48	1/Pst_L1 () 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.030 0.030 0.030	Pc	Du_max_L1 (%) Du_max_L1 (%) 0 0 0 0 0 0 0 0 0	Du_dc_L1 (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1/Du_duration_L1 (s) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Time (-) 2024/2/28 20:53 2024/2/28 10:58 2024/2/28 11:08 2024/2/28 11:18 2024/2/28 11:28 2024/2/28 11:28 2024/2/28 11:38 2024/2/28 11:58 2024/2/28 12:08 2024/2/28 12:18 2024/2/28 12:18 2024/2/28 12:28 2024/2/28 12:48 2024/2/28 12:48	1/Pst_L1 () 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.030 0.030 0.030 0.030	Pc	Du_max_L1 (%) Du_max_L1 (%) 0 0 0 0 0 0 0 0 0	Du_dc_L1 (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1/Du_duration_L1 (s) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			

Power=100% Pn

Time (-)	1/Pst_L1 ()	1/Plt_L1 ()	Du_max_L1 (%)	Du_dc_L1 (%)	1/Du_duration_L1 (s)
2024/2/27 18:26	0.029		0	0	0
2024/2/27 18:36	0.030		0	0	0
2024/2/27 18:46	0.029		0	0	0
2024/2/27 18:56	0.029		0	0	0
2024/2/27 19:06	0.029		0	0	0
2024/2/27 19:16	0.029		0	0	0
2024/2/27 19:26	0.030		0	0	0
2024/2/27 19:36	0.030		0	0	0
2024/2/27 19:46	0.030		0	0	0
2024/2/27 19:56	0.029		0	0	0
2024/2/27 20:06	0.030		0	0	0
2024/2/27 20:16		0.029	0	0	0
2024/2/27 20:16	0.030		0	0	0

4.1.3 Harmonics and interharmonics

The current harmonics, interharmonics and supraharmonics have been measured according to chapter 5.2.4 of VDE V 0124-100:2020-06, at the required power values.

4.1.3.1 Harmonics

Standard EN 61000-3-2 has been taken as reference for harmonic limits. Values measured for current harmonics, total harmonic distortion (THD) up to the 40th harmonic and Partial Weighted Harmonic Distortion (PWHD) from the 12th to the 40th harmonic is offered in the following table and graphs:

P (%P _n)	0	10	20	30	40	50	60	70	80	90	100	Limit
Nr. /	1(A)	1(A)	1(A)	1/4)	1(A)	1/4)	1/4)	1(A)	1(A)	1(A)	1/4)	1(A)
Order	1(A)											
2	0.013	0.013	0.014	0.013	0.013	0.013	0.013	0.012	0.011	0.010	800.0	1.080
3	0.059	0.059	0.059	0.066	0.072	0.081	0.090	0.099	0.107	0.116	0.124	2.300
4	0.009	0.011	0.009	0.009	0.009	0.008	0.007	0.008	0.008	0.007	0.006	0.430
5	0.034	0.036	0.036	0.035	0.036	0.035	0.033	0.031	0.030	0.029	0.028	1.140
6	0.004	0.003	0.004	0.004	0.004	0.003	0.003	0.003	0.003	0.003	0.003	0.300
7	0.021	0.021	0.022	0.020	0.021	0.021	0.019	0.019	0.019	0.018	0.018	0.770
8	0.005	0.005	0.004	0.004	0.004	0.004	0.005	0.004	0.004	0.004	0.004	0.230
9	0.015	0.015	0.012	0.013	0.012	0.014	0.014	0.014	0.014	0.015	0.015	0.400
10	0.005	0.004	0.004	0.005	0.004	0.005	0.005	0.005	0.005	0.004	0.004	0.184
11	0.010	0.011	0.011	0.011	0.010	0.009	0.010	0.010	0.010	0.010	0.010	0.330
12	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.004	0.004	0.003	0.003	0.153
13	0.009	0.009	0.010	0.010	0.010	0.010	0.009	0.009	0.009	0.009	0.009	0.210
14	0.003	0.002	0.003	0.002	0.003	0.002	0.003	0.003	0.003	0.003	0.003	0.131
15	0.005	0.005	0.004	0.004	0.004	0.005	0.005	0.005	0.005	0.005	0.005	0.150
16	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.115
17	0.004	0.004	0.004	0.004	0.003	0.003	0.003	0.004	0.003	0.004	0.004	0.132
18	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.102
19	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.118
20	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.092
21	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.107
22	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.084
23	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.098
24	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.077
25	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.004	0.004	0.004	0.090
26	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.071
27	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.004	0.004	0.083
28	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.066
29	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.005	0.078
30	0.003	0.003	0.003	0.003	0.003	0.003	0.004	0.003	0.003	0.003	0.003	0.061
31	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.073
32	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.004	0.003	0.058
33	0.006	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.006	0.068
34	0.003	0.003	0.004	0.004	0.004	0.003	0.003	0.004	0.003	0.004	0.004	0.054
35	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.064
36	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.051
37	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.005	0.005	0.005	0.061
38	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.048
39	0.006	0.006	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.058
40	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.046
	0.079	0.080	0.080	0.084	0.089	0.096	0.103	0.110	0.117	0.125	0.132	23.000
PWHC(%)	U.111	0.109	0.108	0.107	0.107	0.106	0.108	0.108	0.106	0.109	0.111	23.000

Note: Harmonic orders 41 to 50 are not required by EN 61000-3-2, and only orders 2 to 40 were involved in calculating THC and PWHC

4.1.3.2 Interharmonics

This test is not applicable according to paragraph 5.2.4 of standard VDE V 0124-100:2020-06, which states that inverters >75 A will have to perform current interharmonics test.

4.1.3.3 Higher Frequency

This test is not applicable according to paragraph 5.2.4 of standard VDE V 0124-100:2020-06, which states that inverters >75 A will have to perform current higher frequencies (between 2 kHz and 9 kHz) test.

4.1.4 Commutation notches

The point 5.2.5 of VDE V 0124-100:2020-06 requires verification of the commutation voltage dips in line-commutated inverters.

The equipment shall be operated in three operation points, and three 100ms oscillograms from each operation point shall be measured to check the commutation dips.

Limits and success criteria are specified in VDE-AR-N 4100:2019-04, section 5.4.

 \mathbf{d}_{com} P measured d_{com} limit **Operating point** Ûn (V) $\Delta U_{com}(V)$ measured (%) (p.u) (%) 25%P_{Emax}<P<35%P_{Emax} 0.300 236.2 +6.2 +2.7 65%P_{Emax}<P<75%P_{Emax} 0.704 +2.7 236.2 +6.25.0 90%P_{Emax}<P 0.997 236.2 +6.2 +2.7

Most unfavorable test results for each operation point are presented in the following table:

4.1.5 DC current injection

The point 5.2.6 of VDE V 0124-100:2020-06 refers to the standard DIN EN 61000-4-7 for the verification of the DC current feed into the low-voltage grid.

This test is only required for inverters without internal transformer.

The equipment shall be operated in the following points at the following active power levels:

- 30.0% P_{Emax} <P <40.0% P_{Emax}
- 60.0% P_{Emax} <P <70.0% P_{Emax}
- P >95.0% P_{Emax}

The network or network simulator used for the tests shall meet the following conditions:

- U = U_n ± 5.0%
- f = 50.00 ± 0.20 Hz
- Voltage THD <2.5%
- DC component of the voltage <0.1%

Limits given in VDE-AR-N 4100:2019-04 for direct current feed in are 0.5% of the rated current, or 20 mA, whichever is higher.

Operating point	P measured (p.u)	U measured (p.u.)	f measured (Hz)	lac measured (p.u)	ldc limit (mA)	ldc measured (mA)
30%P _{Emax} <p<40%p<sub>Emax</p<40%p<sub>	0.339	1.000	50.000	0.353		3.68
60%P _{Emax} <p<70%p<sub>Emax</p<70%p<sub>	0.660	1.001	01 50.000 0.670 20		20	3.73
P>95%P _{Emax}	0.985	1.002	50.000	0.995		3.48

4.2 THREE-PHASE INVERTER SYSTEMS

This chapter has been done taking into consideration requirements from chapter 5.6 and information of Annex A.4 of the VDE AR-N 4105:2018-11 standard. Chapter 5.3 of the VDE V 0124-100:2020-06 has been used as a testing procedure.

4.2.1 Calculation of asymmetry of three-phase converters

This test is not applicable according to the section 5.3.2 of the standard VDE V 0124-100:2020-06 due to this testing is only applied to three-phase converters.

4.2.2 Symmetrical operation with a symmetry device

This test is not applicable according to the section 5.3.3 of the standard VDE V 0124-100:2020-06 due to this testing is only applied to EZE and storage operating with a symmetry device.

4.3 NORMAL FREQUENCY OPERATING RANGE

According to the paragraph 5.7.1 of the VDE-AR-N 4105:2018-11, in the frequency range of 47.5 Hz to 51.5 Hz, power generation systems shall be capable of network parallel operation in compliance with the time-related minimum requirements given in Table 1.

Frequency range	Operating period
47,5 Hz to 49,0 Hz	≥ 30 min
49,0 Hz to 51,0 Hz	unlimited
51,0 Hz to 51,5 Hz	≥ 30 min

Table 1 – Frequency/time ranges for the proper operation of power generation systems

Test results are offered in the following tables and graphs:

Test no.	Voltage setpoint (%Un)	Voltage measured (%Un)	Frequency setpoint (Hz)	Frequency measured (Hz)	Min. time required (min)	Time measured (min)	Active power measured (%Pn)	Discon- nection
1	100.0	100.2	47.5	47.50	≥30	30.5	99.4	□ Yes ⊠ No
2	100.0	100.1	51.5	50.00	Unlimited	5.0	99.5	□ Yes ⊠ No
3	100.0	100.1	51.5	51.50	≥30	30.5	99.7	□ Yes ⊠ No

VDE-AR-N 4105:2018-11 + Correction 1:2020-10

4.4 RoCoF

This test has been done according to chapter 5.7.1 of the VDE AR-N 4105:2018-11 standard to verify that the EUT does not disconnect when submitted to frequency jumps.

For verification of this requirement, different tests have been done regarding different frequency jumps and different mobile time windows in the range 47.5 Hz – 51.5 Hz, at 100 %Pn:

- ± 2 Hz/s for a mobile time window of 0.5 s
- ± 1.5 Hz/s for a mobile time window of 1 s
- ± 1.25 Hz/s for a mobile time window of 2 s

Test results are offered in the following tables and graphs:

Test 1: ± 2 Hz/s								
	Start frequency (Hz)	Change desired (Hz/s)	Final Value (Hz)	Ramp (Hz/s)	Disconnection			
Positive frequency drift	49.00	+2.00	51.00	+2.00	🖾 NO 🗆 YES			
Negative frequency drift	50.98	-2.00	49.00	-1.98	🛛 NO 🗆 YES			

Test 2: ± 1.5 Hz/s								
	Start frequency (Hz)	Change Final desired Value (Hz/s) (Hz)		Ramp (Hz/s)	Disconnection			
Positive frequency drift	49.25	+1.50	50.75	+1.50	🖾 NO 🗆 YES			
Negative frequency drift	50.76	-1.50	49.25	-1.50	🖾 NO 🗆 YES			

Test 3: ± 1.25 Hz/s								
	Start frequency (Hz) Chang desire (Hz/s		Final Value (Hz)	Ramp (Hz/s)	Disconnection			
Positive frequency drift	48.75	+1.25	51.24	+1.25	🖾 NO 🗆 YES			
Negative frequency drift	51.25	-1.25	48.75	-1.25	🖾 NO 🗆 YES			

VDE-AR-N 4105:2018-11 + Correction 1:2020-10

4.5 REACTIVE POWER SUPPLY

4.5.1 Reactive power supply at ΣS_{Emax}

This test has been measured according to chapter 5.4.8.2 of VDE V 0124-100:2020-06 to verify requirements from chapter 5.7.2.2 of the VDE AR-N 4105:2018-11 standard. The aim of the test is to verify the following $\cos\varphi(U)$ characteristic and verify the maximum reactive power capacity of the EUT:

For this test, 60s average measurements of the following operation points shall be taken at a voltage of 0.900 p.u., 1.000 p.u. and 1.100 p.u., with a 0.020 U p.u. accuracy:

FOR INVERTERS WITH $\Sigma S_{Emax} \le 4.6$ KVA

 $\cos \phi = 0.950$ (Underexcited and overexcited) and $\cos \phi = 0.980$ (Underexcited and overexcited), at an active power value between 40% P_{Emax} and 60% P_{Emax} and at S_{Emax}.

Cos ϕ shall be configurable in steps of at least 0.01. Measured average Q values tolerances are ±0.040 of P_{Emax} of the Q setpoint for each cos ϕ .

Test results are offered in the following tables and graphs:

	40%P _{Emax} <p <60p<sub="" setpoint="">Emax</p>								
Test 1 (cos phi setpoint = 0.950 inductive)									
Step	U setpoint (p.u.)	U measured (p.u.)	P Measured (p.u.)	Q Desired (p.u.)	Q Measured (p.u.)	Q Deviation (p.u.) (±0.040 of P _{Emax})	PF setpoint	PF measured	time measured (s)
1	0.900	0.900	0.513	+0.164	+0.168	+0.004	0.950	0.950	91.8
2	1.000	1.000	0.505	+0.164	+0.165	+0.001	0.950	0.950	94.0
3	1.100	1.100	0.498	+0.164	+0.166	+0.002	0.950	0.949	104.2
			Test 2	(cos phi s	etpoint = 0.9	50 capacitive)		
Step	U setpoint (p.u.)	U measured (p.u.)	P Measured (p.u.)	Q Desired (p.u.)	Q Measured (p.u.)	Q Deviation (p.u.) (±0.040 of P _{Emax})	PF setpoint	PF measured	time measured (s)
1	0.900	0.900	0.515	-0.164	-0.167	-0.003	0.950	0.951	78.8
2	1.000	1.000	0.506	-0.164	-0.167	-0.003	0.950	0.950	80.0
3	1.100	1.085	0.500	-0.164	-0.164	0.000	0.950	0.950	71.2
			Test 3	(cos phi s	etpoint = 0.9	80 inductive)			
Step	U setpoint (p.u.)	U measured (p.u.)	P Measured (p.u.)	Q Desired (p.u.)	Q Measured (p.u.)	Q Deviation (p.u.) (±0.040 of P _{Emax})	PF setpoint	PF measured	time measured (s)
1	0.900	0.900	0.514	0.102	0.104	+0.002	0.980	0.980	77.8
2	1.000	1.000	0.506	0.102	0.101	-0.001	0.980	0.980	80.0
3	1.100	1.100	0.499	0.102	0.102	0.000	0.980	0.980	82.2
			Test 4	(cos phi s	etpoint = 0.9	80 capacitive)		
Step	U setpoint (p.u.)	U measured (p.u.)	P Measured (p.u.)	Q Desired (p.u.)	Q Measured (p.u.)	Q Deviation (p.u.) (±0.040 of P _{Emax})	PF setpoint	PF measured	time measured (s)
1	0.900	0.900	0.514	-0.102	-0.126	-0.024	0.980	0.971	78.0
2	1.000	1.000	0.506	-0.102	-0.124	-0.022	0.980	0.971	80.0
3	1.100	1.100	0.499	-0.102	-0.120	-0.018	0.980	0.972	82.0

	S set point = SEmax									
Test 1 (cos phi setpoint – 0.950 inductive)										
Step	U setpoint (p.u.)	U measured (p.u.)	P Measured (p.u.)	Q Desired (p.u.)	Q Measured (p.u.)	Q Deviation (p.u.) (±0.040 of P _{Emax})	PF setpoint	PF measured	time measured (s)	
1	0.900	0.900	0.951	+0.312	+0.326	+0.014	0.950	0.946	78.0	
2	1.000	1.000	0.941	+0.312	+0.299	-0.013	0.950	0.953	80.0	
3	1.100	1.100	0.933	+0.312	+0.275	-0.037	0.950	0.959	82.0	
			Test 2	(cos phi s	etpoint = 0.9	50 capacitive)			
Step	U setpoint (p.u.)	U measured (p.u.)	P Measured (p.u.)	Q Desired (p.u.)	Q Measured (p.u.)	Q Deviation (p.u.) (±0.040 of P _{Emax})	PF setpoint	PF measured	time measured (s)	
1	0.900	0.900	0.952	-0.312	-0.286	+0.026	0.950	0.958	68.6	
2	1.000	1.000	0.941	-0.312	-0.300	+0.012	0.950	0.953	75.2	
3	1.100	1.100	0.933	-0.312	-0.314	-0.002	0.950	0.948	66.2	
			Test 3	(cos phi s	etpoint = 0.9	80 inductive)				
Step	U setpoint (p.u.)	U measured (p.u.)	P Measured (p.u.)	Q Desired (p.u.)	Q Measured (p.u.)	Q Deviation (p.u.) (±0.040 of ₽_)	PF setpoint	PF measured	time measured (s)	
1	0.900	0.900	0.987	+0 199	+0.219	+0.019	0.980	0.976	77.0	
2	1.000	1.000	0.977	+0.199	+0.192	-0.007	0.980	0.981	80.0	
3	1.100	1.100	0.969	+0.199	+0.168	-0.031	0.980	0.985	83.0	
	<u>.</u>		Test 4	(cos phi s	etpoint = 0.9	80 capacitive				
Step	U setpoint (p.u.)	U measured (p.u.)	P Measured (p.u.)	Q Desired (p.u.)	Q Measured (p.u.)	Q Deviation (p.u.) (±0.040 of P _{Emax})	PF setpoint	PF measured	time measured (s)	
1	0.900	0.900	0.979	-0.199	-0.181	+0.018	0.980	0.983	77.0	
2	1.000	1.000	0.970	-0.199	-0.194	+0.005	0.980	0.981	80.0	
3	1 100	1 100	0.962	-0 199	-0 204	-0.005	0.980	0.978	83.0	

4.5.2 Reactive power supply smaller than P_{Emax}

This test has been done to verify requirements from chapter 5.7.2.3 of the VDE AR-N 4105:2018-11 standard. The aim of the test is to verify the following P/Q characteristic:

Within the range of $0 \le P_{mom}/P_{Emax} < 0.100 / 0.200$ (or the agreed minimum technical power) the power generation unit shall not exceed the reactive power value at the generator terminals of 10 % of the active power value P_{Emax} (reactive power supply and consumption respectively).

Within the free working range, a reduction of the active power to the benefit of the reactive power is permitted.

The following tests have been done:

- Test 1: Power factor of 0.900 over-excited measuring steps of 5%Pn
- Test 2: Power factor of 0.900 under-excited measuring steps of 5%Pn
- Test 3: Power factor of 1.000 measuring steps of 5%Pn
- Test 4: Power factor of 0.900 over-excited with 20%Pn, 50%Pn and 90%Pn setpoints
- Test 5: Power factor of 0.900 under-excited with 20%Pn, 50%Pn and 90%Pn setpoints

Tests 1, 2 and 3 have been performed to confirm that the equipment complies with the minimum capabilities. Tests 4 and 5 have been performed to check the dynamics of the reactive power provision.

- Only red triangle area is Required, with tolerance: ±4% of P_{Emax}
- When operated at <20% P_{Emax} (figure 5), or <10% P_{Emax} (figure 6), reactive power <10% P_{Emax}

Note:

- 1. The unit can meet the requirements according to Figure 6, then the tests is completed with PF=0.9 instead of 0.95.
- Tests 4 and 5 are not applicable according to the section 5.4.8.3 of the standard VDE V 0124-100:2020-06, due to for guided EZE dynamics: A test of the PT1 behavior of the transition dynamics specified in VDE-AR-N 4105: 2018-11 is not necessarily due to the required limitations of the active power gradient.

Test results are offered in the following tables and graphs:

Test 1 (cos phi setpoint = maximum inductive) (PF=0.9)									
Р	U	Р	Q	S		Q	ΔQ		
Setting	Measured	Measured	Measured	Measured		Desired	(<=		
(% P _{Emax})	(p.u.)	(p.u.)	(p.u.)	(p.u.)	Weasureu	(p.u.)	±0.04*P _{Emax})		
0.0	1.000	0.012	0.086	0.131	0.135				
5.0	1.000	0.064	0.027	0.121	0.921				
10.0	1.000	0.114	0.050	0.160	0.915	0.048	+0.002		
15.0	1.000	0.163	0.075	0.206	0.909	0.073	+0.002		
20.0	1.000	0.213	0.100	0.257	0.904	0.097	+0.003		
25.0	1.000	0.262	0.125	0.308	0.902	0.121	+0.004		
30.0	1.000	0.311	0.147	0.360	0.904	0.145	+0.002		
35.0	1.000	0.360	0.171	0.413	0.903	0.170	+0.001		
40.0	1.000	0.409	0.198	0.467	0.900	0.194	+0.004		
45.0	1.000	0.458	0.221	0.520	0.900	0.218	+0.003		
50.0	1.000	0.507	0.243	0.573	0.902	0.242	+0.001		
55.0	1.000	0.556	0.268	0.627	0.900	0.266	+0.002		
60.0	1.000	0.604	0.294	0.681	0.899	0.291	+0.003		
65.0	1.000	0.652	0.317	0.735	0.899	0.315	+0.002		
70.0	1.000	0.701	0.338	0.787	0.900	0.339	-0.001		
75.0	1.001	0.749	0.364	0.841	0.899	0.363	+0.001		
80.0	1.001	0.797	0.388	0.894	0.899	0.387	+0.001		
85.0	1.001	0.845	0.413	0.949	0.898	0.412	+0.001		
90.0	1.001	0.892	0.431	0.999	0.900	0.436	-0.005		
95.0	1.001	0.892	0.433	1.000	0.899	0.436 (1)	-0.003		
100.0	1.001	0.892	0.432	0.999	0.900	0.436 (1)	-0.004		

⁽¹⁾ Because of limited by apparent power, the active does not reach to $95\%P_{Emax}$ and $100\%P_{Emax}$, when cos $\phi = 0.90$, then the desired reactive power equals to 0.436 P_{Emax} .

VDE-AR-N 4105:2018-11 + Correction 1:2020-10

Test 2 (cos phi setpoint = maximum capacitive) (PF=0.9)									
Р	U	Р	Q	Q S		Q	ΔQ		
Setting	Measured	Measured	Measured	Measured		Desired	(<=		
(% P _{Emax})	(p.u.)	(p.u.)	(p.u.)	(p.u.)	Weasureu	(p.u.)	±0.04*P _{Emax})		
0.0	1.000	0.012	0.086	0.128	0.140				
5.0	1.000	0.064	0.003	0.116	0.999				
10.0	1.000	0.114	-0.046	0.157	0.926	-0.048	+0.002		
15.0	1.000	0.163	-0.071	0.204	0.916	-0.073	+0.002		
20.0	1.000	0.212	-0.096	0.254	0.911	-0.097	+0.001		
25.0	1.000	0.262	-0.121	0.306	0.908	-0.121	0.000		
30.0	1.000	0.311	-0.143	0.358	0.909	-0.145	+0.002		
35.0	1.000	0.361	-0.168	0.411	0.907	-0.170	+0.002		
40.0	1.000	0.410	-0.193	0.465	0.905	-0.194	+0.001		
45.0	1.000	0.459	-0.217	0.519	0.904	-0.218	+0.001		
50.0	1.000	0.508	-0.241	0.573	0.903	-0.242	+0.001		
55.0	1.000	0.557	-0.264	0.626	0.904	-0.266	+0.002		
60.0	1.000	0.605	-0.289	0.681	0.902	-0.291	+0.002		
65.0	1.000	0.654	-0.313	0.735	0.902	-0.315	+0.002		
70.0	1.000	0.702	-0.338	0.789	0.901	-0.339	+0.001		
75.0	1.000	0.751	-0.358	0.841	0.903	-0.363	+0.005		
80.0	1.001	0.799	-0.384	0.896	0.901	-0.387	+0.003		
85.0	1.001	0.847	-0.408	0.950	0.901	-0.412	+0.004		
90.0	1.001	0.891	-0.427	0.998	0.902	-0.436	+0.009		
95.0	1.001	0.894	-0.426	1.000	0.903	-0.436 (1)	+0.010		
100.0	1.001	0.894	-0.428	1.001	0.902	-0.436 ⁽¹⁾	+0.008		

⁽¹⁾ Because of limited by apparent power, the active does not reach to 95% P_{Emax} and 100% P_{Emax} , when cos $\varphi = 0.90$, then the desired reactive power equals to 0.436 P_{Emax} .

VDE-AR-N 4105:2018-11 + Correction 1:2020-10

Test 3 (cos phi setpoint = 1.000)										
Р	U	Р	Q	S		Q	ΔQ			
Setting	Measured	Measured	Measured	Measured		Desired	(<=			
(% P _{Emax})	(p.u.)	(p.u.)	(p.u.)	(p.u.)	measured	(p.u.)	±0.04*P _{Emax})			
0.0	1.000	0.013	0.085	0.132	0.153					
5.0	1.000	0.064	0.003	0.121	0.999					
10.0	1.000	0.114	0.002	0.153	1.000	0.000	+0.002			
15.0	1.000	0.164	-0.001	0.193	1.000	0.000	-0.001			
20.0	1.000	0.213	0.000	0.237	1.000	0.000	0.000			
25.0	1.000	0.263	0.003	0.282	1.000	0.000	+0.003			
30.0	1.000	0.312	0.002	0.329	1.000	0.000	+0.002			
35.0	1.000	0.361	0.001	0.376	1.000	0.000	+0.001			
40.0	1.000	0.410	0.001	0.424	1.000	0.000	+0.001			
45.0	1.000	0.459	0.002	0.472	1.000	0.000	+0.002			
50.0	1.000	0.508	0.002	0.520	1.000	0.000	+0.002			
55.0	1.000	0.557	0.001	0.568	1.000	0.000	+0.001			
60.0	1.000	0.606	0.001	0.616	1.000	0.000	+0.001			
65.0	1.000	0.654	0.001	0.664	1.000	0.000	+0.001			
70.0	1.000	0.703	0.003	0.713	1.000	0.000	+0.003			
75.0	1.000	0.751	0.002	0.761	1.000	0.000	+0.002			
80.0	1.000	0.799	0.001	0.809	1.000	0.000	+0.001			
85.0	1.001	0.847	0.001	0.856	1.000	0.000	+0.001			
90.0	1.001	0.895	0.004	0.904	1.000	0.000	+0.004			
95.0	1.001	0.943	0.003	0.952	1.000	0.000	+0.003			
100.0	1.001	0.996	0.000	1.005	1.000	0.000	0.000			

VDE-AR-N 4105:2018-11 + Correction 1:2020-10

⁽¹⁾ Because of limited by apparent power, the active does not reach to 95%P_{Emax} and 100%P_{Emax}, when $\cos \varphi = 0.90$, then the desired reactive power equals to 0.436 P_{Emax}.

4.6 REACTIVE POWER CONTROL

4.6.1 Reactive power voltage characteristic Q(U)

This test is not applicable according to the section 5.7.2.4 of the standard VDE AR-N 4105:2018-11, due to the Q(U) rule applies only to three-phase power generation units connected to the three-phase current system

4.6.2 Displacement factor/active power characteristic curve cosφ(P)

This test has been done to verify requirements presented in chapter 5.7.2.4 b) of the VDE AR-N 4105:2018-11. For this test, test procedure from chapter 5.4.8.3 of the VDE V 0124-100:2020-06 has been used.

The aim of the test is to verify the capacity of the EUT of controlling power factor using active power through the following characteristic:

The test procedure for this characteristic and for guided EUT consists in performing two power steps, one from $P \le 20\%$ PrE to P = 100% PrE, and then another one from P = 100% PrE to $P \le 20\%$ PrE, waiting for the stationary values to settle for both steps.

The reactive power control for this characteristic curve method must be assessed with regard to stationary accuracy only. Maximum tolerance for Q is ±0.040 P p.u.

Dynamic accuracy for guided EUT is omitted due to the limitations of the prescribed active power gradients for active power setpoints changes (see section 4.8.1 of this Test Report). The active power gradient of the steps has to be measured and in compliance with the requirements of chapter 5.7.4.1 of the VDE AR-N 4105:2018-11 standard.

The power gradients shall occur when the P steps are commanded by a third party, such as the grid operator, and in cases of network security management.

In this case, the unit is Type 2 systems and meet the requirements according to Figure 8.

Test results are offered in the following tables and graphs:

Active Power Setting (% P _{Emax})	Active Power Measured (p.u.)	Reactive Power Measured (p.u.)	Reactive Power Desired (p.u.)	Reactive Power Deviation (p.u.) (<=±0.040 P p.u)	cos φ Measured	P gradient measured (%PAmax/s)
P ≤ 0.20	0.193	+0.003	0.000	+0.003	1.000	
From 0.2 to 1.00	0.947 ⁽¹⁾	-0.299	-0.312 ⁽²⁾	+0.013	0.954	+0.4%
From 1.00 to 0.20	0.193	+0.003	0.000	+0.003	1.000	-0.4%

⁽¹⁾ Because it is limited by apparent power, the active power does not reach to 100% P_{Emax} when $\cos \varphi = 0.95$.

⁽²⁾ The desired reactive power is based on active power equalling to 95%P_{Emax}.

4.6.3 Fixed displacement factor cosφ(P)

This test is used to verify requirements presented in chapter 5.7.2.4 c) of the VDE AR-N 4105:2018-11.

The results obtained for this test can be checked in sections 4.5.1 and 4.5.2 of this Test Report.

4.7 DYNAMIC NETWORK STABILITY

This test requirements are stated in chapter 5.7.3.3 of the VDE AR-N 4105:2018-11 standard, to verify the capacity of the EUT of riding through short-term voltage drops/rises without disconnection. Throughout the different clauses of the mentioned chapter, all the requirements for grid faults are presented. For this test, the procedure from chapter 5.8 of the VDE V 0124-100:2019-09 is used.

Section 5.8.1 of the test procedure specifies that the following generators are excluded from testing:

- Stirling generators and fuel cells, which in principle cannot provide dynamic grid support.
- Synchronous and non-synchronous generators, which are coupled directly or via a converter, with $PrE \leq 50$ kW.

Since the EUT is a non-synchronous generator with $PrE \le 50$ kW, this test is considered not applicable.

4.8 ACTIVE POWER OUTPUT

4.8.1 Active power gradient

This test has been done in order to comply with requirements from chapter 5.7.4.1 of the VDE AR-N 4105:2018-11 standard testing procedure from chapter 5.4.3.4 of the VDE V 0124-100:2020-06 applying the correct limits has been used.

This chapter requires testing an active power step from 100% P_{Amax} to 5% P_{Amax} and another one from 5% P_{Amax} to 100% P_{Amax} for storage units with a power gradient between 0.33% P_{Amax}/s and 0.66% P_{Amax}/s.

Test at maximum power gradient							
Active Power step (Setpoint)	Gradient setting (%P _{Amax} /s)	Active power gradient expected (%P _{Amax} /s)					
100.0% to 5.0% P _{Amax}	-0.65	-0.66 <p <-0.33<="" grad="" td=""></p>					
5.0% to 100.0% P _{Amax}	+0.65	0.33 <p <0.66<="" grad="" td=""></p>					

Test results are presented in the table and graphs below:

Test at minimum power gradient							
Active Power step (Setpoint)	Gradient setting (%PAmax/s)	Active power gradient expected (%P _{Amax} /s)					
100.0% to 5.0% P _{Amax}	-0.35	-0.66 <p <-0.33<="" grad="" td=""></p>					
5.0% to 100.0% P _{Amax}	+0.34	0.33 <p <0.66<="" grad="" td=""></p>					

4.8.2 Ceasing of active power by external signal on input port

This test has been done in order to comply with requirements from chapter 5.7.4.1 of the VDE AR-N 4105:2018-11 standard.

Generating units shall be equipped with a logic interface ("CAN (Controller Area Network)") in order to cease active power output within 5 seconds following an instruction from the grid operator being received at the input port, irrespective of the power gradients from point 4.8.1 of this Test Report. Additionally, the interface may be used for network security management.

Disconnection time 2024/02/28 10:38:49 Edge CH2 J Auto -29.0 A 2 <u>1</u>0.0 A _____500m¥ ™ ™ History Norma 250 V Ð 1 4 3 I L Rms(C2) 2.69168 A Rms(C1) 232.228 V Rms(C3) 2 54216 V ⊿T 0.0220 s Ch3: Signal of logic interface. Ch2: Output Current Ch1:Output Voltage Tested ceasing active power time: 22 ms (limited: <5s)

Test results are graphically shown as below.

SG

4.8.3 Active power steps

This test has been done in order to comply with requirements from chapter 5.7.4.2.2 of the VDE AR-N 4105:2018-11 standard. In order to evaluate this requirement, testing procedure from chapter 5.4.3.3 of the VDE V 0124-100:2020-06 standard has been taken.

Active power will be reduced from 100%PAmax to the minimum active power possible in steps of 10% PAmax to check that the EUT does not disconnect during those steps.

For each step, wait 1 minute after the change of setpoint to allow the EUT to adjust to the new setpoint. After that, the active power shall be measured as a 1-minute average.

Active Power step	Setpoir	nt value	Actua	l value	Deviation (Limit ±5% P _{rE})	
(%P _{rE})	(kW)	(%P _{rE})	(kW)	(%P _{rE})	(kW)	(%P _{rE})
100.0	0.800	100.0	0.796	99.5	-0.004	-0.5
90.0	0.720	90.0	0.718	89.8	-0.002	-0.2
80.0	0.640	80.0	0.641	80.1	+0.001	+0.1
70.0	0.560	70.0	0.562	70.3	+0.002	+0.3
60.0	0.480	60.0	0.484	60.5	+0.004	+0.5
50.0	0.400	50.0	0.405	50.7	+0.005	+0.7
40.0	0.320	40.0	0.327	40.8	+0.007	+0.8
30.0	0.240	30.0	0.248	31.0	+0.008	+1.0
20.0	0.160	20.0	0.169	21.1	+0.009	+1.1
10.0	0.080	10.0	0.089	11.2	+0.009	+1.2
0.0	0.000	0.0	0.009	1.1	+0.009	+1.1

Test results are presented in the following table and graph:

- Values above detailed are obtained as 1-minute mean after 1 minute since the setpoint was adjusted to the required active power step.

Power change gradient set during testing: 0.50%P_{Amax}/s

4.8.4 Active power adjustment at a function of grid frequency

The aim of the test is to demonstrate the response of the EUT due to a deviation in grid frequency from rated value in terms of speed (rise/settling time) and the active power gradient.

This test has been performed according to the point 5.7.4.2.3 of the VDE AR-N 4105:2018-11 standard, changing the parameters in the PGU control system.

Key

f

- PEr highest active power of a power generation unit (10 min mean value)
- equals $P_{\rm Emax}$ for type 1 power generation units or $P_{\rm mom}$ for type 2 power generation units at the moment when $P_{\rm ref}$ 50,2 Hz is exceeded.
- ΔP power change
 - network frequency

Figure 14 – Active power adjustment for type 1 and type 2 power generation units at over-frequency and under-frequency with a static value of 5 % and frequency limit values of 49,8 Hz and 50,2 Hz for starting the adjustment

Key

P_{Emax} highest active power of a power generation unit (10 min mean value)

 ΔP

power change network frequency f

> Figure 15 – Active power adjustment for storage units at an over-frequency with a static value of 5 % and an under-frequency with a static value of 2 % and frequency limit values of 49,8 Hz and 50,2 Hz for starting the adjustment

Frequency measurement accuracy for this test shall be ≤± 10mHz

Tests for both over and underfrequency deviations have been done. For both tests, additional requirements shall be taken into consideration presented in the standard.

The initial delay (Tv) of the steps shall be $\leq 2s$.

During a frequency step, certain conditions that shall be verified:

- After Tv + 0.1*(T_{an_90%}-Tv), a minimum of 9% of the required power gradient for that step has been reached.
- After T_{an_90%}, a minimum of 90% of the required power gradient for that step has been reached.
- Settling time shall not exceed 20s with a tolerance band of 10% of the required setpoint.
- After the disconnection, when the frequency has returned to a value that allows a reconnection, a delay of at least 60s must elapse, and power shall be restored via a gradient ≤ 10% P_{Emax}/min.

(*) $T_{an_{90\%}}$ refers to rise time and Tv refers to initial delay.

Static accuracy for active power is $\leq \pm 10\%$ P_{Emax}.

4.8.4.1 Over-frequency

Test procedure from chapter 5.4.4 (for inverters) / 5.4.5 (for storage) of the VDE V 0124-100:2020-06 standard establishes two tests for certificating the power droop and the disconnection and reconnection conditions at different parameters:

• For Inverters

Regarding active power adjustment at over-frequency, the VDE AR-N 4105:2018-11 standard stablishes that in the frequency range from 50.2/50.5 Hz to 51.5 Hz, active power shall be reduced with a power drop of 2-12%, and that the generation unit shall disconnect if 51.5 Hz is surpassed. Default values for threshold frequency and droop are 50.2 Hz and 5%, respectively.

- <u>Test 1</u>: $P = 100\% P_{Emax}$, frequency threshold for power droop = 50.2 Hz, droop = 5%, test with disconnection and reconnection
- <u>Test 2</u>: P = 60% P_{Emax}, threshold for power droop = 50.5 Hz, droop = 12%, test without disconnection

Note: The PV input port of inverter was supplied by a PV simulator source with I-V characteristic during the testing.

• For storage unit

Regarding active power adjustment at over-frequency, the VDE AR-N 4105:2018-11 standard stablishes that in the frequency range from 50.2/50.5Hz to 51.5Hz, active power shall be reduced with a power drop of 5%, and that the storage unit shall disconnect if 51.5 Hz is surpassed.

- <u>Test 3</u>: P = 100% P_{Emax}, frequency threshold for power droop = 50.2 Hz, droop = 5%, test with disconnection and reconnection
- <u>Test 4</u>: P = 60% P_{Emax} , threshold for power droop = 50.5 Hz, droop = 5%, test without disconnection

Note: The battery input port of inverter was supplied by a simulator DC source with battery characteristic during the testing.

Test-1: PV Unit characteristic – Start power (P_M) = 100%P_{Emax} Fstart (Hz) 50.2 $s = \frac{\Delta f}{f_{\rm n}}$ ΔP Settings 5% Pref Fdisconnect (Hz) 51.5 Steps **P**_M = 100% **P**_{Emax} Variation **Active Power** Active power Frequency Frequency measured Step expected measured (%P_{Emax}) setting (Hz) measured (Hz) (%P_{Emax}) (%P_{Emax}) (±10%P_{Emax}) 50.00 100.0 99.8 -0.2 50.00 a) 50.25 50.25 98.0 0.0 b) 98.0 c) 50.70 80.0 50.70 80.5 +0.5d) 51.40 52.0 51.40 53.1 +1.1 50.70 +0.5 80.0 50.70 80.5 e) 0.0 f) 50.25 98.0 50.25 98.0 50.00 100.0 -0.4 50.00 99.6 g) h) 51.65 0.0 51.65 0.0 0.0 Disconnection confirm (Yes or No) ---Yes i) 50.15 0.0 50.15 0.0 0.0 Reconnected confirm (Yes or No) No ---50.00 100.0 50.00 99.8 -0.2 j) 64.7 Reconnection Time (s) Power gradient limited during step j (<= 10%P_{Emax}/min) Power gradient measured 9.0 (%PEmax /min) Active power feed-in at overfrequency ($P_M = 100\% P_{Emax}$) 1.100 52.00 1.050 51.90 1882.9,0.999 1.000 51.80 0.950 51.70 0.900 51.60 0.850 51.50 0.800 51.40 0.750 51.30 - (p.u.) 0.700 51.20 0.650 51.10 Power Hz) 0.600 51.00 0.550 50.90 SCV Active Freguer 0.500 50.80 and 0.450 50.70 0.400 50.60 Voltage 0.350 50.50 0.300 50.40 0.250 50.30 0.200 50.20 0.150 50.10 0.100 50.00 1151.0 , 50.00 0.050 49.90 0.000 49.80 1215.7,0.000 -0.050 49.70 Time (s) Active Power (p.u.) Voltage (p.u.) Frequency (Hz)

_

VDE-AR-N 4105:2018-11 + Correction 1:2020-10

Test-2: PV Unit characteristic – Start power (P_M) = 60%P_{Emax}

Settings		F _{start} (Hz)	50.5	$s = \frac{\Delta f}{\Delta P}$	12%	
		F _{disconnect} (Hz)	51.5	f _n / P _{ref}	1270	
		Steps		P _M = 60	0% P _{Emax}	
Step	Frequency setting (Hz)	Active Power expected (%P _{Emax})	Frequency measured (Hz)	Active power measured (%P _{Emax})	Variation measured (%P _{Emax}) (±10%P _{Emax})	
a)	50.00	60.0	50.00	60.1	+0.1	
b)	50.40	60.0	50.40	60.1	+0.1	
c)	50.70	58.0	50.70	58.6	+0.6	
d)	51.40	51.0	51.40	51.7	+0.7	
e)	50.70	58.0	50.70	58.5	+0.5	
f)	50.40	60.0 to 100.0 stable at 100.0	50.40	99.4	-0.6	
		Power gradient	t limited during step f (<= 10%P _{Emax} /min)			
Power gradient measured (%P _{Emax} /min)				8.8		
g)	50.00	100.0	50.00	99.3	-0.7	

Fstart (Hz) 50.2 ΔP **Settings** 5 : 5% Pref Fdisconnect (Hz) 51.5 Steps **P**_M = 100% **P**_{Emax} **Active Power** Variation Active power Frequency Frequency Step expected measured measured setting (Hz) measured (Hz) (%PEmax) (%P_{Emax}) (%P_{Emax}) 50.00 100.0 50.00 99.7 -0.3 a) b) 50.25 98.0 50.25 98.2 +0.2 50.70 80.0 50.70 80.6 +0.6 c) 51.40 52.0 +1.0 d) 51.40 53.0 e) 50.70 80.0 50.70 80.6 +0.6 f) 50.25 98.0 50.25 98.1 +0.1 50.00 100.0 g) 50.00 99.5 -0.5 h) 51.65 0.0 0.0 0.0 51.65 Disconnection confirm (Yes or No) Yes -i) 50.15 0.0 50.15 0.0 0.0 Reconnected confirm (Yes or No) No --100.0 j) 50.00 50.00 99.7 -0.3 Reconnection Time (s) 64.5 Power gradient limited during step j (<= 10%P_{Emax}/min) --Power gradient measured 9.0 (%P_{Emax} /min) Active power feed-in at overfrequency ($P_M = 100\% P_{Emax}$) 52.00 1.100 1.050 51.90 1874.8,0.997 1.000 51.80 0.950 51.70 0.900 51.60 0.850 51.50 51.40 0.800 0.750 51.30 Active Power (p.u.) 51.20 0.700 0.650 51.10 (ZH 0.600 51.00 0.550 50.90 2CV 0.500 50.80 Freauer and / 0.450 50.70 0.400 50.60 Voltage 0.350 50.50 0.300 50.40 0.250 50.30 0.200 50.20 0.150 50.10 0 100 1143.2 , 50.00 50.00 0.050 49.90 0.000 1207.7 , 0.000 49.80 -0.050 49.70 Time (s) Active Power (p.u.) — Frequency (Hz)

Test-3: Storage Unit characteristic – Start power (P_M) = 100%P_{Emax}

- Test-4: Storage Unit characteristic – Start power (P_M) = 60%P_{Emax}

Settings Fdisconnect (Hz) 51.5 f_n / P_{ref} Steps P _M = 60% Step Frequency setting (Hz) Active Power expected (%PEmax) Frequency measured (Hz) Active power measured (%PEmax) a) 50.00 60.0 50.00 60.0 b) 50.40 60.0 50.40 60.0 c) 50.70 52.0 50.70 55.6 d) 51.40 38.4 51.40 39.2 e) 50.70 52.0 50.70 55.6 f) 50.40 60.0 to 100.0 50.40 99.4 Power gradient measured (%PEmax /min) 50.40 99.4 8.8 g) 50.00 100.0 50.00 99.3 4 Active power feed-in at overfrequency (P _M = 60% PEmax) 1000 1000 1000 10024,0.995 10024,0.995 1000 1000 50.00 99.3 10024,0.995 10024,0.995 1000 1000 50.00 99.3 1	% P _{Emax} Variation measured (%P _{Emax}) (±10%P _{Emax}) 0.0 0.0 +3.6 +0.8 +3.6 -0.6 -0.7
Steps P _M = 60% Step Frequency setting (Hz) Active Power expected (%PEmax) Frequency measured (Hz) Active power measured (%PEmax) a) 50.00 60.0 50.00 60.0 b) 50.40 60.0 50.40 60.0 c) 50.70 52.0 50.70 55.6 d) 51.40 38.4 51.40 39.2 e) 50.70 52.0 50.70 55.6 d) 51.40 38.4 51.40 39.2 e) 50.70 52.0 50.70 55.6 f) 50.40 60.0 to 100.0 50.40 99.4	% P _{Emax} Variation measured (%P _{Emax}) (±10%P _{Emax}) 0.0 0.0 +3.6 +0.8 +3.6 -0.6 -0.7
Step Frequency setting (Hz) Active Power (%PEmax) Frequency measured (Hz) Active power measured (%PEmax) a) 50.00 60.0 50.00 60.0 b) 50.40 60.0 50.40 60.0 c) 50.70 52.0 50.70 55.6 d) 51.40 38.4 51.40 39.2 e) 50.70 52.0 50.70 55.6 f) 50.40 60.0 to 100.0 stable at 100.0 50.40 99.4 r Power gradient measured (%PEmax /min) 50.40 99.4 8.8 g) 50.00 100.0 50.00 99.3 4	Variation measured (%P _{Emax}) (±10%P _{Emax}) 0.0 0.0 +3.6 +0.8 +3.6 -0.6
a) 50.00 60.0 50.00 60.0 b) 50.40 60.0 50.40 60.0 c) 50.70 52.0 50.70 55.6 d) 51.40 38.4 51.40 39.2 e) 50.70 52.0 50.70 55.6 d) 51.40 38.4 51.40 39.2 e) 50.70 52.0 50.70 55.6 f) 50.40 60.0 to 100.0 stable at 100.0 50.40 99.4 Power gradient limited during step f (<= 10%P _{Emax} /min) Power gradient measured (%P _{Emax} /min) 8.8 g) 50.00 100.0 50.00 99.3 Active power feed-in at overfrequency (P _M = 60% P _{Emax}) 1.00 0.00 0.00 99.3 300 0.00 0.00 99.3 0.00 1.00 0.00 0.00 99.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 +3.6 +0.8 +3.6 -0.6
b) 50.40 60.0 50.40 60.0 c) 50.70 52.0 50.70 55.6 d) 51.40 38.4 51.40 39.2 e) 50.70 52.0 50.70 55.6 f) 50.40 $60.0 to 100.0$ stable at 100.0 50.40 99.4 Power gradient limited during step f (<= 10%P _{Emax} /min) Power gradient measured (%P _{Emax} /min) 8.8 g) 50.00 100.0 50.00 99.3 Active power feed-in at overfrequency (P _M = 60% P _{Emax}) 1.00 1.00 1.00 1.00 0.00 100.0 50.00 99.3	0.0 +3.6 +0.8 +3.6 -0.6
c) 50.70 52.0 50.70 55.6 d) 51.40 38.4 51.40 39.2 e) 50.70 52.0 50.70 55.6 f) 50.40 60.0 to 100.0 stable at 100.0 50.40 99.4 Power gradient measured (%P _{Emax} /min) 8.8 99.3 g) 50.00 100.0 50.00 99.3 Active power feed-in at overfrequency (P _M = 60% P _{Emax}) 1100 0.5000 0.5000 0.5000 0.5000 0.5000 0.500000000	+3.6 +0.8 +3.6 -0.6
d) 51.40 38.4 51.40 39.2 e) 50.70 52.0 50.70 55.6 f) 50.40 60.0 to 100.0 stable at 100.0 50.40 99.4 Power gradient limited during step f (<= 10%P _{Emax} /min) Power gradient measured (%P _{Emax} /min) 8.8 g) 50.00 100.0 50.00 99.3 Active power feed-in at overfrequency (P _M = 60% P _{Emax}) 100 $\frac{1.100}{0.50}$ $\frac{1.100}{0.50}$ $\frac{1.100}{0.50}$ $\frac{1.100}{0.50}$ $\frac{1.100}{0.50}$ $\frac{1.100}{0.50}$ $\frac{1.100}{0.50}$ $\frac{1.100}{0.50}$ $\frac{1.00}{0.50}$ <th< td=""><td>+0.8 +3.6 -0.6</td></th<>	+0.8 +3.6 -0.6
e) 50.70 52.0 50.70 55.6 f) 50.40 $60.0 \text{ to } 100.0$ stable at 100.0 50.40 99.4 Power gradient measured (%P _{Emax} /min) 8.8 99.3 g) 50.00 100.0 50.00 99.3 Active power feed-in at overfrequency (P _M = 60% P _{Emax}) $1022.4, 0.995$ $1002.4, 0.995$ 1.000 0.500 $1022.4, 0.995$ $1002.4, 0.995$ $1002.4, 0.995$ 0.500 0.500 $0.99.3$ $1002.4, 0.995$ $1002.4, 0.995$ 0.500 0.500 $0.99.3$ $1002.4, 0.995$ $0.99.3$ 0.500 0.500 $0.99.3$ $0.99.3$ $0.99.3$ 0.500 $0.99.3$ $0.99.3$ $0.99.3$ $0.99.3$ 0.500 $0.99.3$ $0.99.5$ $0.99.5$ $0.99.5$ 0.500 $0.99.5$ $0.99.5$ $0.99.5$ $0.99.5$ $0.99.5$ $0.99.5$ $0.99.5$ $0.99.5$ $0.99.5$ $0.99.5$ $0.99.5$ $0.99.5$	+3.6 -0.6
f) 50.40 60.0 to 100.0 stable at 100.0 50.40 99.4 Power gradient limited during step f (<= 10%P _{Emax} /min) Power gradient measured (%P _{Emax} /min) 8.8 g) 50.00 100.0 50.00 99.3 Active power feed-in at overfrequency (P _M = 60% P _{Emax}) 1.00 1000 1000 1000 1000 0.950 0.950 0.950 0.955 0.905 0.900 0.900 0.900 0.900 0.955 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900	-0.6
Power gradient limited during step f (<= 10%P _{Emax} /min) Power gradient measured (%P _{Emax} /min) 8.8 g) 50.00 100.0 50.00 99.3 Active power feed-in at overfrequency (P _M = 60% P _{Emax}) 1.100 0.550 0.500 0.550 0.500 0.550 1002.4, 0.955 0.000 0.550 0.550 1002.4, 0.955 0.000 0.550	-0.7
Power gradient measured (%P _{Emax} /min) 8.8 g) 50.00 100.0 50.00 99.3 Active power feed-in at overfrequency (P _M = 60% P _{Emax}) 1000 10024,0.995 100224,0.995 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.500 0.550 0.550 0.550 0.500 0.550 0.500 0.550 0.500 0.550 0.500 0.550 0.500 0.500 0.500 0.550 0.700 0.700 0.700	-0.7
g) 50.00 100.0 50.00 99.3 Active power feed-in at overfrequency (P _M = 60% P _{Emax}) 1.100 1.050 1002.4, 0.995 1002.4, 0.995 1.000 0.950 0.900 0.850 0.850 0.850 0.850 0.800 0.850 0.900 0.850 0.800 0.970 0.970 0.970	-0.7
Active power feed-in at overfrequency (P _M = 60% P _{Emax})	
1.100 1.050 1.000 0.950 0.900 0.850 0.800 0.800 0.750 0.750 0.750	
6.550 0.600 0.550 0.500 0.550 0.500 0.550 0.500 0.550 0.500 0.550 0.500 0.550 0.500 0.550 0.500 0.500 0.500 0.550 0.500 0.550 0.500 0.550 0.500 0.550 0.500 0.550 0.500 0.550 0.500 0.550 0.500 0.550 0.500 0.550 0.500 0.550 0.500 0.550 0.500 0.550 0.500 0.550 0.500 0.550 0.500 0.	52.00 51.90 51.80 51.60 51.60 51.70 51.60 51.70 51.40 51.20 51.10 51.20 51.10 51.20 51.10 51.20 51.00 51.20 51.00 50.00 50
Active Power (p.u.) Frequency (Hz)	

4.8.4.2 Under-frequency

Test procedure from chapter 5.4.6 (for inverters) / 5.4.7 (for storage) of the VDE V 0124-100:2020-06 standard establishes two tests for verification the power droop and the disconnection and reconnection conditions at different parameters:

• For Inverters

Regarding active power adjustment at underfrequency, the VDE AR-N 4105:2018-11 standard states that under 49.8 Hz, active power shall be increased with a power gradient of 40%Pref / Hz. If frequency is reduced under 47.5 Hz, the generation unit shall disconnect.

- <u>Test 1</u>: $P = 10\% P_{Emax}$, test with disconnection and reconnection
- <u>Test 2</u>: $P = 60\% P_{Emax}$, test without disconnection

• For storage unit

Regarding active power adjustment at underfrequency, the VDE AR-N 4105:2018-11 standard states that under 49.8 Hz, active power shall be increased with a power gradient of 100%Pref / Hz. If frequency is reduced under 47.5 Hz, the storage unit shall disconnect.

- Test 3: P = -100% P_{Emax}, test with disconnection and reconnection*
- <u>Test 4</u>: $P = 10\% P_{Emax}$, test without disconnection

*The product has no AC charging function.

49.8 Fstart (Hz) $s = \frac{\Delta f}{f_{\rm n}}$ ΔP **Settings** 5% Pref 47.5 Fdisconnect (Hz) Steps **P**_M = 10% **P**_{Emax} Variation **Active Power** Active power Frequency Frequency measured Step expected measured (%P_{Emax}) setting (Hz) measured (Hz) (%P_{Emax}) (%P_{Emax}) (±10%P_{Emax}) 50.00 10.0 50.00 10.1 +0.1 a) 49.75 12.0 49.75 12.4 +0.4 b) c) 48.80 50.0 48.80 49.9 -0.1 47.60 -1.5 d) 98.0 47.60 96.5 48.80 50.0 48.80 49.8 -0.2 e) 12.4 +0.4f) 49.75 12.0 49.75 50.00 10.0 10.1 +0.1 50.00 g) 47.35 h) 0.0 47.35 0.0 0.0 Disconnection confirm (Yes or No) ---Yes 47.45 i) 0.0 47.45 0.0 0.0 Reconnected confirm (Yes or No) No ---50.00 10.0 50.00 10.1 +0.1 j) 64.8 Reconnection Time (s) Power gradient limited during step j (<= 10%P_{Emax}/min) Power gradient measured 9.2 (%P_{Emax} /min) Active power feed-in at underfrequency ($P_M = 10\% P_{Emax}$) 1.400 50.20 50.10 1.350 1.300 50.00 1.250 49.90 1353.2, 50.00 1.200 49.80 1.150 49.70 49.60 1.100 1.050 49.50 1.000 49.40 0.950 49.30 0.900 0.850 49.20 Voltage and Active Power (p.u.) 49.10 49.00 48.90 0.800 0.750 48.90 48.80 48.70 48.60 48.50 48.40 48.30 0.700 0.650 0.600 0.550 0.500 0.450 0.400 48.30 48.20 0.350 48.10 0.300 48.00 0.250 47.90 0.200 47.80 0.150 1474.7,0.100 47.70 0.100 47.60 0.050 47.50 0.000 47.40 1418.0,0.013 -0.050 47.30 -0.100 47.20 47.10 -0.150 -0.200 47.00 1700 1750 1800 1850 Time (s) Voltage (p.u.) Active Power (p.u.) Frequency (Hz)

Test-1: PV Unit characteristic – Start power (P_M) = 10%P_{Emax}

_

Test-2: PV Unit characteristic – Start power (P_M) = 60%P_{Emax}

Settings		F _{start} (Hz)	49.8	$s = \frac{\Delta f}{\Delta P}$	E9/
		F _{disconnect} (Hz)	47.5	fn / Pref	576
		Steps	P _M = 60	0% P _{Emax}	
Step	Frequency setting (Hz)	Active Power expected (%P _{Emax})	Frequency measured (Hz)	Active power measured (%P _{Emax})	Variation measured (%P _{Emax}) (±10%P _{Emax})
a)	50.00	60.0	50.00	60.4	+0.4
b)	49.75	62.0	49.75	62.7	+0.7
c)	48.80	100.0	48.80	99.1	-0.9
d)	47.60	100.0	47.60	99.0	-1.0
e)	48.80	100.0	48.80	99.1	-0.9
f)	49.85	60.0	49.85	60.4	+0.4
g)	50.00	60.0	50.00	59.9	-0.1

_

VDE-AR-N 4105:2018-11 + Correction 1:2020-10

Test-4: Storage Unit characteristic – Start power (P_M) = 10%P_{Emax}

Sattingo		F _{start} (Hz)	49.8	$s = \frac{\Delta f}{\Delta P}$	20/	
	Settings	F _{disconnect} (Hz)	47.5	f _n / P _{ref}	۷%	
		Steps	$P_{M} = 10\% P_{Emax}$			
Step	Frequency setting (Hz)	Active Power expected (%P _{Emax})	Frequency measured (Hz)	Active power measured (%P _{Emax})	Variation measured (%P _{Emax}) (±10%P _{Emax})	
a)	50.00	10.0	50.00	10.1	+0.1	
b)	49.75	15.0	49.75	15.1	+0.1	
c)	48.80	100.0	48.80	99.2	-0.8	
d)	47.60	100.0	47.60	99.1	-0.9	
e)	48.80	100.0	48.80	99.1	-0.9	
f)	49.85	10.0	49.85	10.1	+0.1	
g)	50.00	10.0	50.00	10.1	+0.1	

4.8.5 Voltage-dependent active power reduction

This test is not required according to the section 5.7.4.4 of the standard VDE AR-N 4105:2018-11 due to reduce the active power feed-in as a function of the voltage of (a) power generation unit(s) is optional.

4.9 SHORT-CIRCUIT CONTRIBUTION

According to the paragraph 5.7.5 of the VDE-AR-N 4105:2018-11, due to the operation of a power generation system, the short-circuit current of the low-voltage network is increased by the short-circuit current of the power generation system. Therefore, the short-circuit current of the power generation system to be expected at the network connection point shall be indicated in accordance with 4.2. For the determination of the initial short-circuit AC current contribution IkA of a power generation system, the following roughly estimated values can be assumed:

- for synchronous generators: 8 times the rated current;
- for asynchronous generators: 6 times the rated current;
- for generators and storage units with inverters: the rated current.

If the power generation system causes a short-circuit current increase in the network operator's network in excess of the rated value, then connection owner and network operator shall agree upon appropriate measures limiting the short-circuit current from the power generation system accordingly.

4.10 **PROTECTION SETTING**

As indicated in VDE-AR-N 4105:2018-11, section 6 (*Construction of the power generation system/network* and system protection (*NS protection*)), the requirements for the network and system protection differ depending on the maximum apparent power ($SAmax^{\sum S_{Amax}}$) of the generating and storage units connected to the same network connection point.

- For installations with $S_{Amax} \sum S_{Amax} \leq 30$ kVA, the NS protection can either be
 - a central NS protection at the central meter panel or decentralized in a sub-distribution; or
 - integrated NS protection

The equipment covered by this Test Report are all below this limit and both of these options can be chosen.

• For installations with $SAmax \sum S_{Amax} > 30$ kVA, the NS protection must be accomplished by a central NS protection device at the central meter panel.

In the case of the equipment covered by this Test Report, this will happen when several units are connected to the same network connection point.

In any case, the NS protection shall meet that a single fault shall not lead to a loss of the protective function (single fault tolerance).

All the tests in this section have been performed without an additional relay connected, to check the internal protection of the equipment.

This test has been done according to requirements presented in chapter 6.5 of the VDE AR-N 4105:2018-11 standard.

Testing procedure from chapter 5.5.7 of the VDE V 0124-100:2020-06 has been used for determining the trip value and the trip time as follows:

For U>>, U<and U<<tests:

- For testing the accuracy of threshold: Starting from a voltage level 2.0% U_n below or above the trip value of the protection function to be tested, the voltage is increased or decreased in steps of 0.5% U_n or less for at least the trip time stated in the protection function to be tested + 200ms (taking into account the maximum 100ms delay for the NS + interface switch), and the voltage at which the EUT trips is to be recorded
- For testing the accuracy of the trip time: Starting from a voltage value 2.0% Un below or above the expected trip value, the voltage shall be increased in a single step to a value 2.0% Un above or below that value. The time taken from the start of the step until the EUT trips is recorded as the trip time.

For the U>tests (tests number 3.1, 3.2 and 3.3) the procedure is the following:

- For test 3.1: Starting from U_n, a single step to 112.0% U_n is performed. The expected behaviour is tripping of the EUT between 450.0s and 550.0s from the start of the step. Each step shall be maintained for at least 600.2s
- For test 3.2: Starting from 100.0% U_n, a single step to 108.0% U_n is performed. The expected behaviour of the EUT is no-tripping. Each step shall be maintained for at least 600.2s

 For test 3.3: Starting from 106.0% U_n, a single step to 114.0% U_n is performed. The expected behaviour is tripping of the EUT between 225.0s and 375.0s from the start of the step. Each step shall be maintained for at least 600.2s

For over/underfrequency tests:

- For testing the accuracy of threshold: Starting from a voltage level 0.10 Hz below or above the trip value of the protection function to be tested, the voltage is increased or decreased in steps of 0.05% fn or less for at least the trip time stated in the protection function to be tested + 200ms (taking into account the maximum 100ms delay for the NS + interface switch), and the voltage at which the EUT trips is to be recorded
- For testing the accuracy of the trip time: Starting from a voltage value 0.10 Hz below or above the expected trip value, the voltage shall be increased in a single step to a value 0.10 Hz above or below that value. The time taken from the start of the step until the EUT trips is recorded as the trip time.

The permissible tolerance for the trip value tests is 1.0% Un for voltage tests and 1.0% fn for the frequency tests.

The trip time tests results shall be within the requirements of Table 2 from chapter 6.5.2 of VDE-AR-N 4105: 2018-11.

Protective function	Setting values for protection relays ^a							
	Stirling genera	ators, fuel cells	Directly coupled		Inverter(s)			
	Synchronous and asynchronous generators with $P_n \le 50$ kW coupled directly or via inverters		asynchronous generators with $P_n > 50$ kW					
Rise-in-voltage protection U>>	1,15 U _n	≤ 100 ms	1,25 U _n	≤ 100 ms	1,25 U _n	≤ 100 ms		
Rise-in-voltage protection U>	1,10 U _n ^b	≤ 100 ms	1,10 U _n ^b	≤ 100 ms	1,10 <i>U</i> _n ^b	≤ 100 ms		
Voltage drop protection $U <$	0,8 U _n ° ≤ 100 ms		0,8 <i>U</i> _n	1,0 s ^d	0,8 <i>U</i> _n	3,0 s		
Voltage drop protection $U^{<}$	Not ap	plicable	0,45 U _n	300 ms ^d	0,45 U _n	300 ms		
Frequency decrease protection f <	47,5 Hz	≤ 100 ms	47,5 Hz	≤ 100 ms	47,5 Hz	≤ 100 ms		
Frequency increase protection f>	51,5 Hz	≤ 100 ms	51,5 Hz	≤ 100 ms	51,5 Hz	≤ 100 ms		

^a The duration set-point "< 100 ms" for the protection relay setting value is based on the assumption that the maximum response time for NS protection + interface switch is also 100 ms. This results in a maximum "total disconnection time" of 200 ms. If the response time of the components is < 100 ms (e. g. 50 ms), then this allows for a longer period during which to perform the measurements and the evaluation of the protective function (e. g. up to 150 ms). This would then result in a protection relay setting value higher than "< 100 ms", i. e. "< 150 ms". However, in that case, only the 100 ms shall be visualised as the setting value at the NS protection. Nevertheless, the disconnection time of 200 ms shall in no case be exceeded.</p>

^b It shall be ensured, that the voltage 1,10 U_n is not exceeded at the network connection point. If compliance with this requirement is ensured by a central NS protection, then it is permissible to set the rise-in-voltage protection at the decentralised power generation unit/system to a value of up to 1,15 U_n . In that case, the system installer should consider any potential effects on the customer installation. Combination of central NS protection ($U >: 1, 1 U_n$) and integrated NS protection ($U >: 1, 1 U_n$ to 1,15 U_n) is recommended, if the voltage drop in the house installation cannot be neglected. This is typically the case with longer connection lines.

^c For the protection of the power generation unit, disconnection may also be realised by means of an additional self-protection setting value (e. g. 0,83 U_n) before the setting value of 0,8 U_n is reached.

^d Where the medium-voltage network of the network operator upstream of the power generation system is operated with automatic reclosing (AWE, de: automatische Wiedereinschaltung), the following protective settings are recommended: U <<-Relay: 0,45 U_{NS}, undelayed (i. e. shortest possible time delay) and U <-Relay: 0,8 U_{NS}, 300 ms. The requirement is specified by the network operator.

Results are presented in the following tables:

Test No.	Protective function	Ramp or leap	Use on	Start value (p.u.)	End value (p.u.)	Step height ΔU (p.u.)	Step duratio n Δt	Expected trip value (p.u.)	Measured trip value (p.u.)	Disconne ction
1.2	U>>	Ramp	L to N	<1.230	>1.270	<0.005	>400 ms	1.250	1.248	⊠ Yes □ No
4.2	U<	Ramp	L to N	>0.820	<0.780	<0.005	>3.2 s	0.800	0.798	⊠ Yes □ No
6.2	V<<	Ramp	L to N	>0.470	<0.430	<0.005	>500 ms	0.450	0.450	⊠ Yes □ No
Test No.	Protective function	Ramp or leap	Use on	Start value (p.u.)	End value (p.u.)	Step height ΔU (p.u.)	Step duratio n ∆t	Expected trip time	Measured trip time	Disconne ction
2.2	U>>	Leap	L to N	<1.230	>1.270	>0.040	>400 ms	≤ 100 ms	93.0ms	⊠ Yes □ No
3.1	U>	Leap	L to N	1.000	1.120	0.120	>600.2 s	450~550 s	485.4 s	⊠ Yes □ No
3.2	U>	Leap	L to N	1.000	1.080	0.080	>600.2 s	No Trip	No Trip	
3.3	U>	Leap	L to N	1.060	1.140	0.080	>600.2 s	225~375 s	274.4 s	⊠ Yes □ No
5.2	U<	Leap	L to N	>0.870	<0.780	>0.040	>3.2 s	3.0~3.1s	3.0 s	⊠ Yes □ No
7.2	U<<	Leap	L to N	>0.470	<0.430	>0.040	>500 ms	>300 ms	327.0 ms	⊠ Yes □ No
Test No.	Protective function	Ramp or leap	Use on	Start value (Hz)	End value (Hz)	Step height Δf (Hz)	Step duratio n Δt	Expected trip value (Hz)	Measured trip value (Hz)	Disconne ction
8.1	f>	Ramp	L to N	<51.40	>51.60	<0.025	>400 ms	51.50	51.50	⊠ Yes □ No
10.1	f<	Ramp	L to N	>47.60	<47.40	<0.025	>500 ms	47.50	47.48	⊠ Yes □ No
Test No.	Protective function	Ramp or leap	Use on	Start value (Hz)	End value (Hz)	Step height Δf (Hz)	Step duratio n ∆t	Expected trip time	Measured trip time	Disconne ction
9.1	f>	Leap	L to N	<51.40	>51.60	>0.2	>400 ms	\leq 100 ms	92.0 ms	⊠ Yes □ No
11.1	f<	Leap	L to N	>47.60	<47.40	<0.2	>400 ms	\leq 100 ms	93.5 ms	⊠ Yes □ No

In the picture below are offered graphically the results of the test.

VDE-AR-N 4105:2018-11 + Correction 1:2020-10

VDE-AR-N 4105:2018-11 + Correction 1:2020-10

4.11 ISLANDING DETECTION

According to the paragraph 6.5.3 of the VDE-AR-N 4105:2018-11 and the paragraph 5.5.10 of the VDE V 0124-100:2020-06 (refer to DIN EN 62116), detection of an island network and disconnection of the power generation system by means of the interface switch shall be completed within 5 s.

All the tests and checks have been performed in accordance with the reference Standard as specified previously. The used quality factor of resonant load was Qf=1. There are required three different tests:

- Test A is at full power
- Test B is at 50%Pn to 66%Pn
- Test C is at 20%Pn to 33%Pn

Test results are shown as below table:

				Tabl	e: tested cor	ndition an	d run-on ti	ime		
No.	P _{EUT} (% of EUT rating)	Reactive Ioad (% of normal)	P _{AC}	Q _{AC}	Run-on time (ms)	P _{EUT} (kW)	Q _{EUT} (kVar) (Cap.)	Q _{EUT} (kVar) (Ind.)	Actual Q _f	Which load is selected to be adjusted (R or C)
					Test	Condition	Α			
1	100	100	-5	5	172.0	0.716	0.840	0.806	1.081	R/C
2	100	100	-5	0	187.0	0.716	0.800	0.806	1.055	R
3	100	100	-5	-5	139.0	0.716	0.760	0.806	1.028	R/C
4	100	100	0	5	189.5	0.753	0.840	0.806	1.031	С
5	100	100	0	0	215.0	0.754	0.800	0.806	1.005	
6	100	100	0	-5	138.5	0.753	0.762	0.806	0.982	С
7	100	100	5	5	170.5	0.793	0.840	0.806	0.981	R/C
8	100	100	5	0	176.5	0.793	0.800	0.806	0.958	R
9	100	100	5	-5	131.5	0.792	0.760	0.806	0.935	R/C
	•				Test	Condition	В	1	1	1
10	66	66	0	-5	147.0	0.504	0.504	0.556	0.986	С
11	66	66	0	-4	164.0	0.505	0.509	0.556	0.991	С
12	66	66	0	-3	191.0	0.505	0.514	0.556	0.994	С
13	66	66	0	-2	187.0	0.505	0.519	0.556	0.998	С
14	66	66	0	-1	278.0	0.505	0.526	0.556	1.005	С
15	66	66	0	0	234.0	0.505	0.530	0.556	1.009	
16	66	66	0	1	176.0	0.504	0.535	0.556	1.016	С
17	66	66	0	2	176.5	0.505	0.541	0.556	1.019	С
18	66	66	0	3	165.0	0.505	0.546	0.556	1.022	С
19	66	66	0	4	181.5	0.505	0.552	0.556	1.030	С
20	66	66	0	5	151.0	0.505	0.557	0.556	1.034	С
	•			0	Test	Condition	C	T	T	1
21	33	33	0	-5	168.0	0.245	0.235	0.299	0.993	С
22	33	33	0	-4	194.0	0.245	0.237	0.299	0.997	С
23	33	33	0	-3	217.0	0.245	0.240	0.299	1.003	С
24	33	33	0	-2	312.0	0.245	0.242	0.299	1.007	С
25	33	33	0	-1	235.0	0.245	0.245	0.299	1.014	С
26	33	33	0	0	205.0	0.246	0.247	0.299	1.014	
27	33	33	0	1	179.0	0.246	0.249	0.299	1.018	С
28	33	33	0	2	174.0	0.245	0.252	0.299	1.028	С
29	33	33	0	3	186.0	0.246	0.254	0.299	1.029	С
30	33	33	0	4	163.5	0.245	0.257	0.299	1.038	С
31	33	33	0	5	137.5	0.246	0.259	0.299	1.038	С

Remark:

For test condition A:

If any of the recorded run-on times are longer than the one recorded for the rated balance condition, then the non-shaded parameter combinations also require testing.

For test condition B and C:

If run-on times are still increasing at the 95 % or 105 % points, additional 1 % increments are taken until run-on times begin decreasing.

Test results are graphically shown as below.

VDE-AR-N 4105:2018-11 + Correction 1:2020-10

4.12 CONNECTION CONDITIONS AND SYNCHRONIZATION

The power generation system shall be connected to the network only if both voltage and frequency are within the tolerance range according to the 8.3.1 of VDE-AR-N 4105:2018-11 and the sections 5.6 of VDE V 0124-100:2020-06

In the pictures below are offered the tests performed. The inverter has to be reconnected after a delay time of 60 seconds once voltage and frequency are within the range specified. It is also shown that the active power doesn't exceed the gradient of 10 % of the active power per minute.

Each step shall be maintained for at least 120s or until the power has recovered completely.

The results are offered in the table and graphs below:

Test item	Measured	Reconnection	Reconnection Time	Measured gradient
i est item	Value	(Yes or No?)	(s) (>60 s)	(%P _{Amax} /min)
U _{ist} <84% U _n	82.0% Un	🖾 NO 🗆 YES		
U _{ist} ≥ 86% U _n	87.0% Un	🗆 NO 🛛 YES	64.0	9.13
U _{ist} >111% U _n	112.1% U _n	🖾 NO 🗆 YES		
U _{ist} ≤ 109% U _n	108.1% U _n	🗆 NO 🛛 YES	64.0	8.88
fist <47.45 Hz	47.40 Hz	🖾 NO 🗆 YES		
fist ≥ 47.55 Hz	47.60 Hz	🗆 NO 🛛 YES	64.0	8.97
fist >50.15 Hz	50.16 Hz	🖾 NO 🗆 YES		
fist ≤ 50.05 Hz	50.04 Hz	🗆 NO 🛛 YES	64.3	8.95

Page 89 of 93

	Hard	lware & S	Software Ver	sion			
РСВ	Materail Number		Materail Des	cription		Version	
PowerBoard	32029002110	0203	A17C1-Powe	erBoard		V0.5	
	2002	A17C	1				
	New Versio	n	,	v1.3.1.0	•		
	Current Ver	sion	2	v1.0.0.1			
		Seria	Number				
	AC Output-Grid Anker Innovati Room 1318-19 Anker Innovati Made in China batch	numbe	ower nited vood Plaza itschland (ir 76), 610 Nat GmbH Ge	ihan Ro iorg-Mi	ad, Mongko Johe-Strass	ok, Kov se 3, 8
	ALWAYS H	ERE T(www.anker.co int@ank) HELP m ter.com	J DE (Anke Mon-Eri	er SOLIX) 9 00 Uhi	+49 (800) 600 2 bis 19:00 Uhr	1522 U N

6 ELECTRICAL SCHEME

7 CE DECLARATION

					Version V1
Name of the Manufac	turer Anker	Innovations Lim	nited		
Address of the Manuf	acturer Room Hong F	1318-19, Hollyw Kong	wood Plaza, 610 N	uthan Road, Mongko	k, Kowloon,
Name of the Product	Anker	SOLIX Balcony	Energy Storage S	/stem	
Trade Mark	ANKEF	4			
Model No.	A17C1	, A17C3			
Ve declare under our re lirectives and standard	esponsibility that the abo Is, applicable in part or ir	ve referenced p whole:	product complies	vith the following rec	cognized
Standards					
IEC 62321-7-2:2017, VDE-AR-N 4105:2018	IEC 62321-4:20104412 IEC 62321-8:2017 3-11+ Correction 1:2020-	·10	-6:2013, IEC 6232	1-6:2016, IEC 62321	-7-1.2010,
IEC 62321-7-2:2017, VDE-AR-N 4105:2018 Directives	IEC 62321-8:2017 3-11+ Correction 1:2020-	-10	-6:2013, IEC 6232	1-6:2016, IEG 62321	
IEC 62321-7-2:2017, VDE-AR-N 4105:2018 Directives 2014/35/EU, 2014/30 2011/65/EU and ame 2009/125/EC and 201 Electrical Equipment Electromagnetic Com Radio Equipment Reg The Restriction of the 2012, The Ecodesign for En	ICO 602214.201674.12 IEC 62321-8:2017 8-11+ Correction 1:2020 Indment (EU) 2015/863 19/1782/EU, (Safety) Regulations 2011 Ipatibility Regulations 20 gulations 2017 : Use of Certain Hazardon rergy-Related Products F	-10 6, 16, us Substances legulations 201	in Electrical and E	ectronic Equipment	Regulations
IEC 62321-7-2:2017, VDE-AR-N 4105:2018 Directives 2014/35/EU, 2014/30 2011/65/EU and ame 2009/125/EC and 201 Electrical Equipment Electromagnetic Com Radio Equipment Reg The Restriction of the 2012, The Ecodesign for En represent and warrant ompliance of the prod Declaration of Conform roduct to be true and	IEC 62321-8:2017 IEC 62321-8:2017 8-11+ Correction 1:2020 I/EU, 2014/53/EU Indment (EU) 2015/863 19/1782/EU, (Safety) Regulations 2019 Julations 2017 Use of Certain Hazardon rergy-Related Products F ithat: (i) I am a designate uct (including with the re ity) and (iii) the information accurate and do not con	-10 -10 6, 16, us Substances Regulations 2011 id person of the quirements mei on I have provid tain any materia	in Electrical and E 0. e manufacturer, (ii) entioned in Anker In ded in support of th al omissions.	ectronic Equipment am responsible for novations Limited ar e safety and effectiv	Regulations the regulatory nd this veness of the
IEC 62321-7-2:2017, VDE-AR-N 4105:2018 Directives 2014/35/EU, 2014/30 2011/65/EU and ame 2009/125/EC and 201 Electrical Equipment Electromagnetic Com Radio Equipment Reg The Restriction of the 2012, The Ecodesign for En represent and warrant ompliance of the prod Declaration of Conform roduct to be true and Title:	IEC 62321-8:2017 IEC 62321-8:2017 8-11+ Correction 1:2020 I/EU, 2014/53/EU Indment (EU) 2015/863 19/1782/EU, (Safety) Regulations 201 gulations 2017 Use of Certain Hazardon rergy-Related Products F ithat: (i) I am a designate luct (including with the re ity) and (iii) the information accurate and do not con Compliance Mi	-10 -10 6, 16, us Substances Regulations 2011 id person of the iquirements me on I have provid tain any materia anager	in Electrical and E 0. e manufacturer, (ii) entioned in Anker In ded in support of th al omissions. Function:	ectronic Equipment am responsible for novations Limited ar e safety and effectiv Compliance	Regulations the regulatory nd this veness of the
IEC 62321-7-2:2017, VDE-AR-N 4105:2018 Directives 2014/35/EU, 2014/30 2011/65/EU and ame 2009/125/EC and 201 Electromagnetic Com Radio Equipment Reg The Restriction of the 2012, The Ecodesign for En represent and warrant ompliance of the prod Declaration of Conform roduct to be true and Title: Name:	ICO GODE 1 4:2010 FAT 2 IEC 62321-8:2017 8-11+ Correction 1:2020 I/EU, 2014/53/EU Indment (EU) 2015/863 19/1782/EU, (Safety) Regulations 2011 Ipatibility Regulations 2011 Ipatibility Regulations 2017 9: Use of Certain Hazardo Index (i) I am a designate luct (including with the re ithat: (i) I am a designate Louis Qi Louis Qi	6, 16, 16, 16, 16, 16, 16, 16, 1	in Electrical and E 0. e manufacturer, (ii) entioned in Anker Ir fed in support of th al omissions. Function: Date:	ectronic Equipment am responsible for novations Limited ar e safety and effectiv Compliance 2024-3-15	Regulations the regulatory nd this veness of the